• Title/Summary/Keyword: 레이더강우량추정

Search Result 86, Processing Time 0.029 seconds

Rainfall Estimation by X-band Marine Radar (X밴드 선박용 레이더를 이용한 강우 추정)

  • Kim, Kwang-Ho;Kwon, Byung-Hyuk;Kim, Min-Seong;Kim, Park-Sa;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.695-704
    • /
    • 2018
  • The rainfall cases were identified by rainfall estimation techniques which were developed by using X - band marine radar. A digital signal converter was used to convert the signal received from the marine radar into digital reflectivity information. The ground clutter signal was removed and the errors caused by beam attenuation and beam volume changes were corrected. The reflectivity showed a linear relationship with the rain gauge rainfall. Quantitative rainfall was estimated by converting the radar signal into an cartesian coordinate system. When the rainfall was recorded more than $5mm\;hr^{-1}$ at three automatic weather stations, the rain cell distribution on the marine radar was consistent with that of the weather radar operated by Korea meteorological Adminstration.

Simulation of Distributed Flood using the KMA-Radar Rainfall Data and Rain gauge Data (기상청 레이더 강우자료와 지상강우자료를 이용한 내린천 유역의 분포형 홍수유출 모의)

  • Kim, Byung-Sik;Hong, Seung-Jin;Bae, Young-Hye
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1021-1026
    • /
    • 2009
  • 본 연구에서는 물리적 기반의 완전분포 모형인 $Vflo^{TM}$ 모형을 이용하여 강원도 인제군에 위치한 내린천 유역을 대상으로 광덕산 레이더 자료와 지상강우 자료를 이용하여 분포형 홍수유출모의를 실시하였다. $Vflo^{TM}$모형을 구성하기 위해서 GIS 지형공간 자료가 사용하였다. 유역의 하천 배수망과 각 격자에서의 경사를 구하기 위하여 250m 격자 크기의 DEM을 사용하였다. 본 연구에서는 2006년 7월 14일부터 2006년 7월 17일까지의 관측 레이더 강우자료(Quantitative Precipitation Estimation, QPE), 보정된 레이더 강우자료, 지상 강우량자료를 동일한 조건의 $Vflo^{TM}$모형에 입력하여 관측 유출량과 비교함으로써 기상청레이더 자료와 조건부합성기법으로 보정된 레이더 자료의 수문모형의 입력 자료로써의 타당성을 비교하고자 하였다. 광덕산 레이더 강우의 경우 관측치보다 상당히 과소 추정되는 모습을 보여주었고, 지상강우와 조건부합성기법으로 보정된 레이더 강우의 경우 실제 관측치와 비슷한 유출을 나타내었지만, 조건부 합성기법(Kim, 2008)을 이용하여 레이더강우와 지상강우를 합성한 보정 레이더 강우자료가 가장 좋은 결과를 보여주었다. 이를 통해 기상레이더 강우자료와 지상강우자료를 합성할 경우 충분히 레이더 강우를 이용하여 홍수모형의 입력자료로써 수문학적 활용성이 있음을 확인하였다.

  • PDF

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method (크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정)

  • Kim, Kwang-Ho;Kim, Min-seong;Lee, Gyu-Won;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological and hydrological applications. In this study, we adjusted the QPE from an S-band weather radar based on co-kriging method using the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accurate quantitative precipitation, the error of radar rainrate which is a primary variable of co-kriging was determined by the difference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co-kriging is derived from the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by co-kriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate was then applied to the radar estimated precipitation field. Locally heavy rainfall case during 6-7 July 2009 is chosen to verify this study. Correlation between adjusted one-hour radar rainfall accumulation and rain gauge rainfall accumulation improved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean square error from 7.45 to 3.93 mm.

Generation of radar rainfall ensemble using probabilistic approach (확률론적 방법론을 이용한 레이더 강우 앙상블 생성)

  • Kang, Narae;Joo, Hongjun;Lee, Myungjin;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.155-167
    • /
    • 2017
  • Accurate QPE (Quantitative Precipitation Estimation) and the quality of the rainfall data for hydrological analysis are very important factors. Especially, the quality has a great influence on flood runoff result. It needs to know characteristics of the uncertainties in radar QPE for the reliable flood analysis. The purpose of this study is to present a probabilistic approach which defines the range of possible values or probabilistic distributions rather than a single value to consider the uncertainties in radar QPE and evaluate its applicability by applying it to radar rainfall. This study generated radar rainfall ensemble for the storms by the typhoon 'Sanba' on Namgang dam basin, Korea. It was shown that the rainfall ensemble is able to simulate well the pattern of the rain-gauge rainfall as well as to correct well the overall bias of the radar rainfall. The suggested ensemble technique represented well the uncertainties of radar QPE. As a result, the rainfall ensemble model by a probabilistic approach can provide various rainfall scenarios which is a useful information for a decision making such as flood forecasting and warning.

Development of Radar Super Resolution Algorithm based on a Deep Learning (딥러닝 기술 기반의 레이더 초해상화 알고리즘 기술 개발)

  • Ho-Jun Kim;Sumiya Uranchimeg;Hemie Cho;Hyun-Han Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.417-417
    • /
    • 2023
  • 도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.

  • PDF

Bias correction of radar rainfall estimates for improvement of rainfall estimation accuracy in shared river between North and South Korea (남북 공유하천 강수량 추정 정확도 향상을 위한 레이더 강수 편의보정 방안 연구)

  • Son, Chan-Young;Jang, Cheol-Ho;Ban, Woo-Sik;Ahn, Je-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.300-300
    • /
    • 2019
  • 남북공유하천인 북한강 및 임진강 유역 남측에는 평화의 댐, 군남댐이 치수목적으로 건설되어 운영되고 있으나 북측의 기상 및 수문정보 획득이 불가하여 홍수대응에 불확실성이 높으며 공유하천상류 북측댐 방류패턴에 많은 영향을 받고 있다. 특히 접경지역 남측에 위치한 군남댐은 상류에 있는 황강댐에 비해 저수용량이 작고 우리나라 최북측 수위관측지점(필승교)에서 군남댐까지의 홍수도달시간은 1시간 이내로 예 경보 등 사전 대응에 한계가 있어 북측의 정보가 무엇보다 중요하다. 북측 강우상황 파악 및 위기대응 능력 강화를 위하여 실제 K-water는 기상청 관할 레이더(광덕산)를 활용한 접경지역 댐 유역 강우추정 및 홍수분석 체계를 구축하여 현업에 활용 중이나 실제 관측 강우량 대비 정량적인 차이를 보임에 따라 황강댐 방류 규모 및 군남댐 유입량 예측에 많은 한계가 있다. 따라서, 본 연구에서는 보다 정확한 임진강 상류 북측 강수량 추정을 위하여 기상청 관할 광덕산 레이더에서 얻어지는 군남댐 유역의 추정 강수량(Radar-AWS Rainrate; RAR)에 대하여 통계적 편의보정을 수행하였다. 본 연구에서 적용한 통계적 편의보정기법은 '확률분포형을 활용한 기법', '매개변수적 기법', '비매개변수적 기법' 등 크게 3가지로 구분할 수 있으며 세부적으로 총 11가지 기법을 적용하여 분석을 수행하였다. 분석결과, 일부 기법을 제외하고는 보정 전에 비해 정량적으로 레이더 강수량의 정확도가 향상된 것으로 나타났으며 특히 매개변수적 편의보정기법이 우수한 결과(결정계수: 0.9898)를 보였다. 비매개변수적 편의보정기법은 상대적으로 관측자료가 적어 과거기간에 발생하지 않은 이상치가 발생할 경우 비현실적인 강수로 편의보정되므로 충분한 자료가 축적된 이후 활용가능할 것으로 판단된다. 본 연구의 결과는 북한댐 수문 운영패턴 예측, 접경지역 홍수모의 및 홍수대응 등 치수적인 측면에서 활용도가 높을 것으로 판단된다.

  • PDF

Bright Band Detection Using X-band Polarimetric Radar (X-밴드 이중편파 레이더에 의한 밝은 띠 탐지)

  • Lee, Dong-ryul;Jang, Bong-joo;Hwang, Seok Hwan;Han, Myeong-sun;No, Huiseong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.17-17
    • /
    • 2016
  • 이중편파 레이더는 수평 수직반사도($Z_H{\cdot}Z_V$), 차등반사도($Z_{DR}$), 교차상관계수(${\rho}_{HV}$), 차등위상차(${\Phi}_{DP}$) 등 다양한 변수 산출을 통하여 대기 수상체 구분, 우적분포에 영향이 적은 강우량 추정, 밝은 띠(BB, Bright Band)의 탐지 등이 가능하게 됨으로써 수문기상 및 재해관리 분야에 활용성이 점점 더 커지고 있다. 본 연구는 RHI, PPI에서 생산된 레이더 변수를 이용하여 BB를 탐지하고 그 특성을 평가하였다. BB는 레이더를 이용하여 상층대기를 관측할 때 수직단면에서 강수입자가 눈에서 비로 변하는 구간에서 과대하게 높은 반사도가 나타나는 층을 말한다. BB에서는 QPE가 과대 추정되기 때문에, BB의 특성 파악은 레이더의 관측전략 수립과 QPE 보정에 필수적이다. 본 연구에서는 RHI에 의한 $Z_H$의 연직단면분석, RHI와 PPI의 고도각 경사거리(slant range) 빔의 ${\rho}_{HV}$, $Z_{DR}$, $Z_H$에 의한 분석을 통하여 BB의 상단부($BB_{TOP}$), 최정점($BB_{PEAK}$) 및 하단부($BB_{BOTTOM}$)의 고도를 상호 비교 평가하였다. 분석 자료는 KICT X-밴드 레이더에 의한 관측한 2015년 10월 21일의 층상운에 의한 강우를 이용하였다. RHI에 의한 $Z_H$의 연직단면 분석결과 $BB_{top}$, $BB_{bottom}$$BB_{peak}$는 KICT 레이더 고도(MSL : 40m)를 기준으로 각각 3.26Km, 2.3Km($BB_{width}$: 0.96km) 및 2.7Km로 나타났다. 이 같은 결과는 다른 2가지 분석방법에서도 유사하게 나타나고 있으며, 이는 BB분석을 위해 다양한 변수를 통한 신뢰성 있는 BB의 특성을 파악할 수 있는 기반을 제공한다.

  • PDF

Analysis of behavior by duration of extreme rainfall based on radar precipitation data (레이더 강수 데이터 기반 극한 강우의 지속시간별 거동 분석)

  • Soohyun Kim;Dongkyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.116-116
    • /
    • 2023
  • 대규모 댐과 같은 수공구조물의 파괴시 상당한 피해가 발생하므로 구조물설계시 가능최대강수량(PMP) 기준이 적용된다. 포락선 방법은 가장 극심했던 강우량의 포락선을 작성하여 PMP를 산정하는 방법으로 기상 및 강수량자료가 부족시 PMP 추정이 어려운 경우에 사용한다. 포락선의 근사식은 지속시간의 거듭제곱인 멱함수 형태로 나타내며, 우리나라의 경우 1일을 전후로 계수와 차수가 다른 식을 사용한다. 이러한 근사식은 우리나라의 이상홍수 발생빈도 및 규모가 커짐에 따라 검토될 필요성이 있다. 또한, PMP 산정시 활용하는 제한된 수의 지상관측자료는 시공간적 변동성을 완전히 포착할 수 없어 한계가 있다. 본 연구는 이러한 한계를 극복하기 위하여 기상레이더 자료를 기반으로 우리나라 전역의 최대 강우깊이-지속시간 관계를 분석 및 새로운 PMP 포락선을 제시한다. 활용한 레이더는 CMAX(Column Maximum)로 2009~2018년간 10분 단위자료를 수집하였다. 레이더 자료와 비교하기 위하여 지상관측자료 AWS를 함께 수집하였다. AWS는 1997~2022년간 1분 단위자료로 우리나라 전역의 547개 지점관측자료를 활용하였다. 레이더자료는 Z-R 관계식으로 변환하여 가외치(outlier)를 제거 및 보정하였다. 그 후, 정규 크리깅기법으로 생성한 지상관측 강우장과 병합하는 CM(Conditional Merging)기법을 적용하였다. 우리나라 최대 강우깊이-지속시간 관계를 산정한 결과, 기존 포락선의 값이 낮게 산정되었음을 확인하였다. 이는 기후변화 등에 따라 최근 극한 호우가 발생한 것으로 판단된다. 또한, 실제 근사식은 멱함수 거동에서 벗어난 형태로 나타났고, 지점관측자료가 기상레이더 값보다 과소추정되는 경향을 확인하였다. 특히 같은 기간에서 확인하였을 때, 강우지속시간이 짧을수록 AWS값과 레이더자료의 강수량이 2배 정도 차이를 보여 지점관측소가 없는 지역의 국지성 호우 존재를 확인할 수 있었다. 추후, 미래에 더 긴 레이더 시계열을 사용한다면, 더욱 신뢰성 있는 자료로 활용할 수 있을 것으로 판단한다.

  • PDF

Development of radar-based nowcasting method using Generative Adversarial Network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 기법 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.64-64
    • /
    • 2022
  • 이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.

  • PDF

Application of an empirical method to improve radar rainfall estimation using cross governmental dual-pol. radars (범부처 이중편파레이더의 강우 추정 향상을 위한 경험적 방법의 적용)

  • Yoon, Jungsoo;Suk, Mi-Kyung;Nam, Kyung-Yeub;Park, Jong-Sook
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.625-634
    • /
    • 2016
  • Three leading agencies under different ministries - Korea Meteorological Administration (KMA) in the ministry of Environment, Han river control office in the Ministry of Land, Infrastructure and Transport (MOLIT) and Weather Group of ROK Air Force in the Ministry of National Defense (MND) - have been operated radars in the purpose of observing weather, hydrology and military operational weather in Korea. Eight S-band dual-pol. radars have been newly installed or replaced by these ministries over different places by 2015. However each ministry has different aims of operating radars, observation strategies, data processing algorithms, etc. Due to the differences, there is a wide level of accuracy on observed radar data as well as the composite images made of the cross governmental radar measurement. Gaining fairly high level of accuracy on radar data obtained by different agencies has been shared as a great concern by the ministries. Thus, "an agreement of harmonizing weather and hydrological radar products" was made by the three ministries in 2010. Particularly, this is very important to produce better rainfall estimation using the cross governmental radar measurement. Weather Radar Center(WRC) in KMA has been developed an empirical method using measurements observed by Yongin testbed radar. This study is aiming to examine the efficiency of the empirical method to improve the accuracies of radar rainfalls estimated from cross governmental dual-pol. radar measurements. As a result, the radar rainfalls of three radars (Baengnyeongdo, Biseulsan, and, Sobaeksan Radar) were shown improvement in accuracy (1-NE) up to 70% using data from May to October in 2015. Also, the range of the accuracies in radar rainfall estimation, which were from 30% to 60% before adjusting polarimetric variables, were decreased from 65% to 70% after adjusting polarimetric variables.