• Title/Summary/Keyword: 레이다 탐지

Search Result 241, Processing Time 0.03 seconds

Application of Image Processing Techniques to GPR Data for the Reliability Improvement in Subsurface Void Analysis (지표레이더(GPR) 탐사자료를 이용한 지하공동 분석 시 신뢰도 향상을 위한 영상처리기법의 활용)

  • Kim, Bona;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.61-71
    • /
    • 2017
  • Recently, ground-penetrating radar (GPR) surveys have been actively carried out for precise subsurface void investigation because of the rapid increase of subsidence in urban areas. However, since the interpretation of GPR data was conducted based on the interpreter's subjective decision after applying only the basic data processing, it can result in reliability problems. In this research, to solve these problems, we analyzed the difference between the events generated from subsurface voids and those of strong diffraction sources such as the buried pipeline by applying the edge detection technique, which is one of image processing technologies. For the analysis, we applied the image processing technology to the GRP field data containing events generated from the cavity or buried pipeline. As a result, the main events by the subsurface void or diffraction source were effectively separated using the edge detection technique. In addition, since subsurface voids associated with the subsidence has a relatively wide scale, it is recorded as a gentle slope event unlike the event caused by the strong diffraction source recorded with a sharp slope. Therefore, the directional analysis of amplitude variation in the image enabled us to effectively separate the events by the subsurface void from those by the diffraction source. Interpretation based on these kinds of objective analysis can improve the reliability. Moreover, if suggested techniques are verified to various GPR field data sets, these approaches can contribute to semiautomatic interpretation of large amount of GPR data.

Doppler Frequency Compensated Detection and Ranging Algorithm for High-speed Targets (도플러 주파수가 보상된 고속 표적 탐지 및 레인징 알고리즘)

  • Youn, Jae-Hyuk;Kim, Kwan-Soo;Yang, Hoon-Gee;Chung, Young-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1244-1250
    • /
    • 2010
  • This paper presents a detection and ranging algorithm for a high-speed targets in the high PRF radar. We show, unlike the conventional methods, it firstly estimates Doppler frequency with a quasi-periodic pulse train prior to range processing. The estimated Doppler frequency can compensate the phase error enbeded in the received signal, which makes the signal integrated coherently in the range direction and localizes the target's signiture in low SNR. We present the derivation of the proposed algorithm and discuss how the system parameters such as the range/Doppler sampling condition, processing time and Doppler estimation error affect the performance of the proposed algorithm, which is verified by simulations.

Convenient Radar Received Power Prediction Method for North Korea SLBM Detection (북한 SLBM 탐지를 위한 레이다 수신전력 간편 추정 방법)

  • Seo, Hyeong-Pil;Park, Hyoung Hun;Lee, Kyoung-Haing
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • This research focuses on convenient radar received power prediction method for detection predictions of North Korea SLBM(Submarine Launched Ballistic Missile). Recently, North Korea tested launching of SLBM which is threatening international security. Therefore, for active respondence to these threat, it is essential to analyze the radar detection prediction of SLBM. In this point of view, this work suggests a method for detection predictions for SLBM by simulating of RCS(Radar Cross Section) and wave propagation.

Implementation of Airborne Multi-Function Radar Including Attitude Maneuvering (자세 기동을 고려한 항공기 탑재 다기능 레이다 통합 시뮬레이터 구현)

  • Ko, Jae-Youl;Park, Soon-Seo;Choi, Han-Lim;Ahn, Jae-Myung;Lee, Sung-Won;Lee, Dong-Hui;Yoon, Jung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2017
  • In this paper, a simulation test bed is presented which operates to provide full-scale simulation of airborne multi-function phased array radars. This simulation test bed provides a capability to evaluate the target tracking performance. To realize aircraft operation scenario, we developed 6DOF aircraft dynamics model which can generate trajectories and attitude of an aircraft. This procedure includes steady state flight trim search, autopilot design, and aircraft guidance command design. Also, the radar-environment integrated simulator includes target detection/measurement model and tracking filter. Developed simulator is validated by creating an air-to-air scenario.

Development of Comprehensive performance test equipment to confirm the performance of small radar systems (소형 추적 레이다 시스템 성능확인을 위한 종합성능시험 장비 개발)

  • Hong-Rak Kim;Youn-Jin Kim;Seong-Ho Park;Man Hee LEE;Da-Been LEE
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • The compact tracking radar system is a pulsed radar tracking system that searches, detects, and tracks targets in real time against aircraft targets with a small RCS(Radar Cross Section) maneuvering at high speed. This paper describes the development of comprehensive performance test equipment to verify the performance of the radar system in a anechoic chamber environment. Describes the design and manufacture of comprehensive performance test equipment to meet requirements, including the generation of simulated target signals to simulate aircraft target signals to verify performance in the laboratory environment of radar systems. It also describes a GUI(Graphic User Interface) program to check performance through a test in conjunction with the tracking radar system. Verify the comprehensive performance test equipment implemented through the performance test.

High Resolution Radar Model to Simulate Detection/Tracking Performance of Multi-Function Radar in War Game Simulator (통합 교전 시뮬레이터 환경에서 다기능 레이다 탐지/추적 성능 모의를 위한 고해상도 레이다 모델)

  • Rim, Jae-Won;Oh, Suhyun;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.70-78
    • /
    • 2019
  • In this paper, modeling of a high-resolution multi-function radar is proposed to simulate radar performance in a war game simulator, called AddSIM. To incorporate the multi-function radar model into the AddSIM, the modeling must comprise a component-based structure consisting of physics, logics, and information blocks. Therefore, we assign the RF hardware of a RADAR as the physic block, a controller as the logics block, and the RF specifications of the RADAR as the information block. Detailed modeling of the physics and logics blocks are addressed, and data structure is also presented on an engineering level. On a multi-target engaged scenario, the performance of the multi-function radar is numerically analyzed and its validation is examined.

Algorithm on Detection and Measurement for Proximity Object based on the LiDAR Sensor (LiDAR 센서기반 근접물체 탐지계측 알고리즘)

  • Jeong, Jong-teak;Choi, Jo-cheon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.192-197
    • /
    • 2020
  • Recently, the technologies related to autonomous drive has studying the goal for safe operation and prevent accidents of vehicles. There is radar and camera technologies has used to detect obstacles in these autonomous vehicle research. Now a day, the method for using LiDAR sensor has considering to detect nearby objects and accurately measure the separation distance in the autonomous navigation. It is calculates the distance by recognizing the time differences between the reflected beams and it allows precise distance measurements. But it also has the disadvantage that the recognition rate of object in the atmospheric environment can be reduced. In this paper, point cloud data by triangular functions and Line Regression model are used to implement measurement algorithm, that has improved detecting objects in real time and reduce the error of measuring separation distances based on improved reliability of raw data from LiDAR sensor. It has verified that the range of object detection errors can be improved by using the Python imaging library.

A Method on the Improvement of the Minimum Detection Distance of the Remote Measurement Level Meter (원격 측정 레벨계의 최소 탐지거리 성능 개선 방법)

  • Park, Dongkun;Lee, Kijun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.535-543
    • /
    • 2018
  • Recently, level meters have been associated with the safety and maintenance of industrial sites and require a wide measurement range. Generally, to ensure the measurement range of the level meter, the measurement environment is improved to reduce the noise or to compensate the distortion of the signal through signal processing. The noise of FMCW (Frequency Modulated Continuous Wave) radar level meter or the distortion of the signal affects the near region characteristics of the level gauge, resulting in a reduction of the minimum detection distance. In this paper, an equalizer filter considering characteristics of window function and bit spectrum is applied to remove the noise in the near region of the level meter to improve the minimum detection distance performance and to improve the measurement reliability in the vicinity of the level meter, which is relatively difficult to detect, we want to improve the detection range.

Implementation of Radar Drone Detection Based on ISAR Technique (ISAR 영상 기반 소형 드론 탐지 구현)

  • Lee, Kee-Woong;Song, Kyoung-Min;Song, Jung-Hwan;Jung, Chul-Ho;Lee, Woo-kyung;Lee, Myeong-Jin;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.159-162
    • /
    • 2017
  • Along with the popular use of commercial drones, there are increased concerns on the possible threats from drones intruding into secured areas. The difficulty of drone detection is attributed to its stealthy operation flying at low altitude with low level signature. Consequently, the anti-drone technique has been of major research topic in recent years and among others, the radar detection is considered as the most promising technique. However, the use of conventional radar detection may not be effective due to the low level radar cross sections of the commercial drones. In this paper, ISAR technique has been employed to implement drone detection in urban area. To this purpose, a pulsed radar system is set up on the ground to track flying drones and the corresponding ISAR images are produced by coherent processing.