• Title/Summary/Keyword: 러프 집합 근사화

Search Result 7, Processing Time 0.02 seconds

A Study on Image Retrieval System Using Rough Set (러프 집합을 이용한 영상 검색 시스템에 관한 연구)

  • 김영천;김동현;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.479-484
    • /
    • 1998
  • 입력된 영상으로부터 추론된 정보 표를 지식베이스에 저장하여 결정해를 구하는데는 많은 탐색시간이 소비된다. 본 논문에서는 탐색 시간을 감소시키기 위해서 러프집합의 식별(classification)과 근사(approximation) 개념을 이용하여 추론된 정보를 동치 클래스(equivalence class)로 분류하여 간략화한다. 감소된 규칙, 즉 Core와 Reduct 리스트를 구하여 결정해를 검색하는데 탐색 시간을 감소시키는데 있다.

  • PDF

Reduction of Approximate Rule based on Probabilistic Rough sets (확률적 러프 집합에 기반한 근사 규칙의 간결화)

  • Kwon, Eun-Ah;Kim, Hong-Gi
    • The KIPS Transactions:PartD
    • /
    • v.8D no.3
    • /
    • pp.203-210
    • /
    • 2001
  • These days data is being collected and accumulated in a wide variety of fields. Stored data itself is to be an information system which helps us to make decisions. An information system includes many kinds of necessary and unnecessary attribute. So many algorithms have been developed for finding useful patterns from the data and reasoning approximately new objects. We are interested in the simple and understandable rules that can represent useful patterns. In this paper we propose an algorithm which can reduce the information in the system to a minimum, based on a probabilistic rough set theory. The proposed algorithm uses a value that tolerates accuracy of classification. The tolerant value helps minimizing the necessary attribute which is needed to reason a new object by reducing conditional attributes. It has the advantage that it reduces the time of generalizing rules. We experiment a proposed algorithm with the IRIS data and Wisconsin Breast Cancer data. The experiment results show that this algorithm retrieves a small reduct, and minimizes the size of the rule under the tolerant classification rate.

  • PDF

러프집합과 계층적 분류구조를 이용한 데이터마이닝에서 분류지식발견

  • Lee, Chul-Heui;Seo, Seon-Hak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.202-209
    • /
    • 2002
  • This paper deals with simplification of classification rules for data mining and rule bases for control systems. Datamining that extracts useful information from such a large amount of data is one of important issues. There are various ways in classification methodologies for data mining such as the decision trees and neural networks, but the result should be explicit and understandable and the classification rules be short and clear. The rough sets theory is an effective technique in extracting knowledge from incomplete and inconsistent data and provides a good solution for classification and approximation by using various attributes effectively This paper investigates granularity of knowledge for reasoning of uncertain concopts by using rough set approximations and uses a hierarchical classification structure that is more effective technique for classification by applying core to upper level. The proposed classification methodology makes analysis of an information system eary and generates minimal classification rules.

A Diagnostic Feature Subset Selection of Breast Tumor Based on Neighborhood Rough Set Model (Neighborhood 러프집합 모델을 활용한 유방 종양의 진단적 특징 선택)

  • Son, Chang-Sik;Choi, Rock-Hyun;Kang, Won-Seok;Lee, Jong-Ha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • Feature selection is the one of important issue in the field of data mining and machine learning. It is the technique to find a subset of features which provides the best classification performance, from the source data. We propose a feature subset selection method using the neighborhood rough set model based on information granularity. To demonstrate the effectiveness of proposed method, it was applied to select the useful features associated with breast tumor diagnosis of 298 shape features extracted from 5,252 breast ultrasound images, which include 2,745 benign and 2,507 malignant cases. Experimental results showed that 19 diagnostic features were strong predictors of breast cancer diagnosis and then average classification accuracy was 97.6%.

A Study on the YCbCr Color Model and the Rough Set for a Robust Face Detection Algorithm (강건한 얼굴 검출 알고리즘을 위한 YCbCr 컬러 모델과 러프 집합 연구)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.117-125
    • /
    • 2011
  • In this paper, it was segmented the face color distribution using YCbCr color model, which is one of the feature-based methods, and preprocessing stage was to be insensitive to the sensitivity for light which is one of the disadvantages for the feature-based methods by the quantization. In addition, it has raised the accuracy of image synthesis with characteristics which is selected the object of the most same image as the shape of pattern using rough set. In this paper, the detection rates of the proposed face detection algorithm was confirmed to be better about 2~3% than the conventional algorithms regardless of the size and direction on the various faces by simulation.

A Classification Method of Delirium Patients Using Local Covering-Based Rule Acquisition Approach with Rough Lower Approximation (러프 하한 근사를 갖는 로컬 커버링 기반 규칙 획득 기법을 이용한 섬망 환자의 분류 방법)

  • Son, Chang Sik;Kang, Won Seok;Lee, Jong Ha;Moon, Kyoung Ja
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.4
    • /
    • pp.137-144
    • /
    • 2020
  • Delirium is among the most common mental disorders encountered in patients with a temporary cognitive impairment such as consciousness disorder, attention disorder, and poor speech, particularly among those who are older. Delirium is distressing for patients and families, can interfere with the management of symptoms such as pain, and is associated with increased elderly mortality. The purpose of this paper is to generate useful clinical knowledge that can be used to distinguish the outcomes of patients with delirium in long-term care facilities. For this purpose, we extracted the clinical classification knowledge associated with delirium using a local covering rule acquisition approach with the rough lower approximation region. The clinical applicability of the proposed method was verified using data collected from a prospective cohort study. From the results of this study, we found six useful clinical pieces of evidence that the duration of delirium could more than 12 days. Also, we confirmed eight factors such as BMI, Charlson Comorbidity Index, hospitalization path, nutrition deficiency, infection, sleep disturbance, bed scores, and diaper use are important in distinguishing the outcomes of delirium patients. The classification performance of the proposed method was verified by comparison with three benchmarking models, ANN, SVM with RBF kernel, and Random Forest, using a statistical five-fold cross-validation method. The proposed method showed an improved average performance of 0.6% and 2.7% in both accuracy and AUC criteria when compared with the SVM model with the highest classification performance of the three models respectively.

The Weight Decision of Multi-dimensional Features using Fuzzy Similarity Relations and Emotion-Based Music Retrieval (퍼지 유사관계를 이용한 다차원 특징들의 가중치 결정과 감성기반 음악검색)

  • Lim, Jee-Hye;Lee, Joon-Whoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.637-644
    • /
    • 2011
  • Being digitalized, the music can be easily purchased and delivered to the users. However, there is still some difficulty to find the music which fits to someone's taste using traditional music information search based on musician, genre, tittle, album title and so on. In order to reduce the difficulty, the contents-based or the emotion-based music retrieval has been proposed and developed. In this paper, we propose new method to determine the importance of MPEG-7 low-level audio descriptors which are multi-dimensional vectors for the emotion-based music retrieval. We measured the mutual similarities of musics which represent a pair of emotions expressed by opposite meaning in terms of each multi-dimensional descriptor. Then rough approximation, and inter- and intra similarity ratio from the similarity relation are used for determining the importance of a descriptor, respectively. The set of weights based on the importance decides the aggregated similarity measure, by which emotion-based music retrieval can be achieved. The proposed method shows better result than previous method in terms of the average number of satisfactory musics in the experiment emotion-based retrieval based on content-based search.