• 제목/요약/키워드: 랭킹 시스템

검색결과 104건 처리시간 0.027초

실시간 침입탐지 시스템을 위한 새로운 특징랭킹과 특징선택 프레임워크에 대한 연구 (A new feature ranking and feature selection framework for realtime IDS)

  • 이상재;김세헌
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.514-518
    • /
    • 2008
  • 인터넷의 보급에 따라 네트워크를 통한 공격에 피해가 급증하고 있다. 이러한 네트워크 침해를 막기위해 여러 연구자들은 침입탐지 시스템(IDS)을 제안하였으나, 시스템의 탐지율에만 초점을 맞추고 있기 때문에 실시간(Realtime)으로 동작하지 못하고 있다. 실시간 IDS를 위하여 최근 다양한 특징선택(Feature selection)들이 제안되고 있다. 본1) 논문에서는 특징들을 중요도의 순위를 정하는 새로운 랭킹 방법과 이 방법에 따라서 특징을 선택하는 특징 선택 알고리즘을 제안한다. 또한 제안된 알고리즘을 통하여 선택된 특징을 사용할 경우 탐지결과가 우수함을 실험으로 보여주고 있다.

  • PDF

소셜 북마킹 시스템에서의 북마크와 태그 정보를 활용한 웹 콘텐츠 랭킹 알고리즘 (A Web Contents Ranking Algorithm using Bookmarks and Tag Information on Social Bookmarking System)

  • 박수진;이시화;황대훈
    • 한국멀티미디어학회논문지
    • /
    • 제13권8호
    • /
    • pp.1245-1255
    • /
    • 2010
  • 현재 웹 2.0 환경에서의 핵심 기술 중 하나는 사용자가 관심 있는 웹페이지를 태깅 및 북마킹 하는 소셜 북마킹 기술이다. 소셜 북마킹은 웹 콘텐츠에 태깅된 북마크 정보 및 태깅 결과를 기반으로 검색, 분류, 공유를 통해 효율적인 정보 제공을 주목적으로 하고 있다. 그러나 현재 소셜 북마킹 시스템들은 웹 콘텐츠의 사용자들의 관심 정도를 측정할 수 있는 북마크 수 및 검색과 분류를 목적으로 하는 태그 정보를 각각 독립적으로 검색에 활용하는 방식을 사용하고 있다. 이는 소셜 북마킹 시스템에서 중요한 특징을 가지는 북마크와 태깅 기술을 효율적으로 활용하지 못하는 결과가 된다. 이에 본 연구에서는 태그 클러스터링을 통한 연관 태그 추출에 관한 선행연구를 기반으로, 북마크 정보와 혼합하기 위한 웹 콘텐츠 랭킹 알고리즘을 제안하였다. 또한 제안 알고리즘의 효율성 분석을 위해 기존 검색 방법론들과의 비교평가를 시행하였으며, 그 결과 본 연구의 핵심적인 특징인 북마크와 태그 정보를 함께 활용한 소셜 북마크 시스템이 기존 시스템보다 효율적인 검색결과를 도출하였다.

콜드스타트 문제 완화를 위한 기저속성 추출 기반 추천시스템 제안 (Toward Preventing Cold-start Problem: Basis Recommendation System)

  • 이정섭;문현석;박찬준;강명훈;이승준;안성민;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.427-430
    • /
    • 2022
  • 추천시스템에서 콜드스타트 문제를 해결하기 위해 다양한 연구들이 진행되고 있다. 하지만, 대부분의 연구는 아직도 사용자 기반의 히스토리 데이터셋을 반드시 필요로 하여, 콜드스타트 문제를 완벽히 해결하지 못하고 있다. 이에 본 논문은 콜드스타트 문제를 완화할 수 있는 기저속성 기반의 추천시스템을 제안한다. 제안하는 방법론을 검증하기 위해, 직접 수집한 한국어 영화 리뷰 데이터셋을 기반으로 성능을 검증하였으며, 평가 결과 제안한 방법론이 키워드와 사용자의 리뷰 점수를 효과적으로 반영한 추천시스템임을 확인할 수 있었고, 데이터 희소성 및 콜드스타트 문제를 완화하여 기존의 텍스트 기반 랭킹 시스템의 성능을 압도하는 것을 확인하였다. 더 나아가 제안된 기저속성 추천시스템은 추론 시에 GPU 컴퓨팅 자원을 요구하지 않기에 서비스 측면에서도 많은 이점이 있음을 확인하였다.

  • PDF

백과사전 질의응답을 위한 구문정보기반 정답색인방법 (A LF based Answer Indexing Method for Encyclopedia Question-Answering System)

  • 김현진;이충희;오효정;왕지현;장영길
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.511-513
    • /
    • 2005
  • 본 논문은 정답 색인 방법을 이용하여 응답 속도가 빠르고 정확한 백과사전 질의응답 시스템을 구현하는 방법을 제안한다. 논문에서 제안한 정답 색인 방법은 대상 문서에서 160여 개의 정답 유형 범주에 해당하는 정답 후보를 인식하고, 정답 후보와 색인 범주에 속하는 키워드를 색인단위로 정의하여 저장하였다. 특히 용언정보에 대해서는 LF(Logical Form)단위로 색인하여 색인 정확도를 높였다. 정답 랭킹에서는 사용자 질문에서 각 단어별로 문장 성분. 단어 가중치 정보 등을 이용하여, 필수단어를 산정하고 이를 정답랭킹의 방법으로 활용하였다. 이러한 방법론은 용언 정보를 활용해야 효과적인 백과사전이라는 문서 도메인의 특성을 반영하고, 빠른 질문 응답 시간을 보장하는 백과사전 질의응답 시스템에 적합하다.

  • PDF

연관 태그 및 유사 사용자 가중치를 이용한 웹 콘텐츠 랭킹 시스템 (A Web Contents Ranking System using Related Tag & Similar User Weight)

  • 박수진;이시화;황대훈
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.567-576
    • /
    • 2011
  • 웹 2.0의 발전에 따라 다양한 기술들이 제공되며 그 중 대두되는 기술로 사용자가 관심 있는 웹페이지를 태깅 및 북마킹하는 소셜 북마킹 기술이다. 그러나 현재 소셜 북마킹 시스템들은 웹 콘텐츠의 중요 정보인 다른 사용자들의 관심 정도를 측정할 수 있는 북마크 수 및 검색과 분류를 목적으로 하는 태그 정보를 각각 독립적으로 검색에 활용하며 또한, 다른 사용자들과의 유사도를 반영하지 못하여 소셜 북마킹 시스템의 특징을 반영하지 못한 검색결과를 도출하고 있는 실정이다. 이에 본 연구에서는 선행 연구를 기반으로 태그 클러스터링을 통한 연관 태그 추출 및 북마크 정보와 다른 사용자의 유사도를 혼합한 웹 콘텐츠 랭킹 알고리즘을 제안하였다. 또한 제안 알고리즘의 효율성 분석을 위해 기존 검색 방법론 및 선행 연구의 방법론과의 비교평가를 시행하였으며, 그 결과 본 연구의 핵심적인 특징인 태그 정보 및 북마크 수와 유사도를 활용한 방법이 기존 방법론보다 효율적인 결과를 도출하였다.

비즈니스 인사이드 - 영신기계(주), 레보텍106SB 블랭킹 시스템 시연회 개최

  • 조갑준
    • 프린팅코리아
    • /
    • 제11권4호
    • /
    • pp.118-119
    • /
    • 2012
  • 영신기계(주)(대표이사 이태호 이경택, www.diecuter.co.kr)는 지난 3월 3일 서울, 광주, 대전 등 전국 각지의 고객 및 관련사 대표 100여명을 초청한 가운데 대구 공장에서 레보텍 106SB 블랭킷 시스템 시연회를 개최했다. 특히 이번에 공개된 라보텍 106SB는 영신기계가 드루파2012에 출품할 전략 모델이어서 참관객들의 큰 관심을 불러 일으켰다.

  • PDF

스테이터 및 로터의 블랭킹 및 피어싱에 관한 자동화된 금형설게 시스템 (An Automated Die Design System for Blanking and Piercing of Stator and Rotor Parts)

  • Park, J.C.;Kim, B.M.;Kim, C.
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.22-33
    • /
    • 1997
  • This paper describes a research work of developing a computer-aided design of blanking and piercing for stator and rotor parts. Based on knowledge-based rules, the die design system, STRTDES2, is designed by considering several factors, such as complexities of blank geometry and punch profile, and availability of press equipment and standard parts. Therefore this system can carry out a die design for each process which is obtained from the result of an automated process planning system, STRTDES1 and generate part drawing and the assembly drawing of die set in graphic forms. Knowledges for die layout are extracted from plasticity theories, relevant references and empirical know-hows of experts in blanking industries.

  • PDF

스테이터 및 로터의 블랭킹에 관한 공정설계 및 금형설계 시스템 (An Automated Process Planning and Die Design System for Blanking of Stator and Rotor Parts)

  • Park, J.C.;Kim, M.M.;Lee, S.M.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.40-51
    • /
    • 1996
  • This paper describes some research works of computer-aided design of blanking and piercing progressive die for stator and rotor parts. An approach to the system is based on knowledge based rules. The deveolped system is composed of six modules such as main program, input and shape treatment, production feasibility check, strip layout, die layout and drawing edit module. Using this system, design parameters ( geometric shapes, die and punch dimensions and dimensions of tool elements) are determined and output is gen- erated in graphic from. Knowledges for tool design are extracted from the plasticity theories, handbooks, relevant references and empirical know-hows of experts in blkanking companies. The developed system provides powerful capabilities for process planning and die design of stator and rotor parts.

  • PDF

군집화를 이용한 하이브리드 기반 채용검색 랭킹 기법 (Recruiting Ranking Techniques Based on Hybrid Using Clustering)

  • 조보연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1587-1590
    • /
    • 2012
  • 인터넷의 활용이 보편화 됨에 따라 정보의 양은 급격히 늘어나고 있다. 이에 취업을 희망하는 구직자의 경우 IR 로부터 원하는 정보를 검색하기 위해 과거보다 더 많은 시간과 노력이 필요하게 되었다. 이에 본 논문에서는 TF(Term Frequency)기법을 통해 문서를 추출하고 추출된 문서의 Doc_ID 빈도수를 기준으로 한 내용기반과 군집기법을 혼합한 하이브리드 검색 시스템을 제안한다. 구직자들이 클릭한 취업정보들의 링크번호들을 K-means 알고리즘을 이용하여 군집화를 한다. 생성된 군집들은 각기 하나의 문서로 가정하고, 기존 문서과 더불어 검색 주제와 연관성을 갖고 있는 문서들을 동적비율로 검색 랭킹 하는 방식이다. 기존의 IR 기술과의 비교 실험을 통해 성능을 평가하였다. 실험결과 본 논문에서 제안한 방법이 기존의 방법보다 우수함을 확인할 수 있었다