• Title/Summary/Keyword: 랭크

Search Result 281, Processing Time 0.021 seconds

Revisiting PageRank Computation: Norm-leak and Solution (페이지랭크 알고리즘의 재검토 : 놈-누수 현상과 해결 방법)

  • Kim, Sung-Jin;Lee, Sang-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.268-274
    • /
    • 2005
  • Since introduction of the PageRank technique, it is known that it ranks web pages effectively In spite of its usefulness, we found a computational drawback, which we call norm-leak, that PageRank values become smaller than they should be in some cases. We present an improved PageRank algorithm that computes the PageRank values of the web pages correctly as well as its efficient implementation. Experimental results, in which over 67 million real web pages are used, are also presented.

Verification of the Difference in Effectiveness of Static Plank Exercise by Motion -Focusing on EMG Analysis- (정적 플랭크 운동의 동작 별 효과성 차이 검증 -근전도 분석을 중심으로-)

  • Kim, You-Sin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.335-339
    • /
    • 2022
  • The purpose of this research was to investigate the comparison of core muscle activities according to different performance in static Plank exercise. Ten "J" University's males(age, 23.20±0.65 years; height, 174.54±1.51 cm; body mass, 70.00±2.24 kg; and BMI, 22.94±0.51 kg/m2) completed this study as the subjects. Four type's static Plank motions were performed(full Plank, FP; elbow Plank, EP; side Plank, SP; reverse Plank, RP). For the EMG analysis, we measured the core muscle activities of right side on the rectus abdominis(RA), external oblique(EO), latissimus dorsi(LD), and erector spinae(ES). This research's results were as follows. LD and ES muscle activities were greatest during RP(p<.001). RA and EO muscle activities were greatest during EP(p<.001). Therefore, this results are anticipated to serve as basic data for static Plank performance applications in effective exercise programs.

PageRanking of Newly Crawled Web Documents (추가 수집 웹 문서를 위한 페이지랭크 할당 모델)

  • Oh, Eun-Jung;Kang, In-Ho;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.228-234
    • /
    • 2002
  • 사용자가 얻고자 하는 정보를 인터넷에서 빠르고 정확하게 검색하는 것은 중요하다. 웹 문서들 간의 상대적인 중요성을 나타내는 페이지랭크는 검객의 질을 높일 수 있어, 정보 검색에 많이 이용된다. 인터넷상의 웹 문서는 짧은 시간에 빠르게 증가하므로 새로운 문서들이 생성될 때마다 전체 문서의 페이지랭크를 계산하는 것은 많은 시간과 비용이 소모된다. 기존 웹 문서의 페이지랭크는 변경하지 않고 추가된 웹 문서들만으로 페이지랭크를 계산할 수 있다면 시간과 비용면에서 효율을 높일 수 있다. 본 논문에서는 추가되는 문서는 이전 문서의 페이지랭크에 많은 영향을 미치지 않는다는 점을 이용하여 추가되는 문서를 위한 페이지랭크를 할당 모델을 제시하고 평가한다.

  • PDF

Implementation Techniques to Apply the PageRank Algorithm (페이지랭크 알고리즘 적용을 위한 구현 기술)

  • Kim, Sung-Jin;Lee, Sang-Ho;Bang, Ji-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.745-754
    • /
    • 2002
  • The Google search site (http://www.google.com), which was introduced in 1998, implemented the PageRank algorithm for the first time. PageRank is a ranking method based on the link structure of the Web pages. Even though PageRank has been implemented and being used in various commercial search engines, implementation details did not get documented well, primarily due to business reasons. Implementation techniques introduced in [4,8] are not sufficient to produce PageRank values of Web pages. This paper explains the techniques[4,8], and suggests major data structure and four implementation techniques in order to apply the PageRank algorithm. The paper helps understand the methods of applying PageRank algorithm by means of showing a real system that produces PageRank values of Web pages.

Journal PageRank Calculation in the Korean Science Citation Database (국내 인용 데이터베이스에서 저널 페이지랭크 측정 방안)

  • Lee, Jae-Yun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.22 no.4
    • /
    • pp.361-379
    • /
    • 2011
  • This paper aims to propose the most appropriate method for calculating the journal PageRank in a domestic citation database. Korean journals show relatively high journal self-citation ratios and have many outgoing citations to external journals which are not included in the domestic citation database. Because the PageRank algorithm requires recursive calculation to converge, those two characteristics of domestic citation databases must be accounted for in order to measure the citation impact of Korean journals. Therefore, two PageRank calculation methods and four formulas for self-citation adjustment have been examined and tested for KSCD journals. The results of the correlation analysis and regression analysis show that the SCImago Journal Rank formula with the cr2 type self-citation adjustment method seems to be a more appropriate way to measure the relative impact of domestic journals in the Korean Science Citation Database.

Performance Analysis of Web-Crawler in Multi-thread Environment (다중 쓰레드 환경에서 웹 크롤러의 성능 분석)

  • Park, Jung-Woo;Kim, Jun-Ho;Lee, Won-Joo;Jeon, Chang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.473-476
    • /
    • 2009
  • 본 논문에서는 다중 쓰레드 환경에서 동작하는 웹 크롤러를 구현하고 성능을 분석한다. 이 웹 크롤러의 특징은 검색시간을 단축하기 위하여 크롤링, 파싱 및 페이지랭킹, DB 저장 모듈을 서로 독립적으로 다른 작업을 수행하도록 구현한 것이다. 크롤링 모듈은 웹상의 데이터를 수집하는 기능을 제공한다. 그리고 파싱 및 페이지랭크 모듈은 수집한 데이터를 파싱하고, 웹 페이지의 상대적인 중요도를 수치로 계산하여 페이지랭크를 지정한다. DB 연동 모듈은 페이지랭크 모듈에서 구한 페이지랭크를 데이터베이스에 저장한다. 성능평가에서는 다중 쓰레드 환경에서 쓰레드 수와 웹 페이지의 수에 따른 검색 시간을 측정하여 그 결과를 비교 평가한다.

  • PDF

The Comparative Analysis of Body Muscle Activities in Plank Exercise with and without Thera-band (플랭크 운동의 세라밴드 적용 유·무에 따른 신체 근육의 근전도 비교분석)

  • Kim, You-Sin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.758-765
    • /
    • 2019
  • The purpose of the this study was to determine the comparative analysis of body muscle activities in plank exercise with and without thera-band. Twelve healthy adult males(age, $21.75{\pm}.57$ years; height, $173.33{\pm}1.34cm$; body mass, $65.92{\pm}1.64kg$; and BMI, $21.93{\pm}.46kg/m^2$) participated in this study as subjects. Plank exercises(full, elbow, side, and reverse plank) were performed with four different thera-band in without(WT), red color(RT), blue color(BT), and siver color(ST). We measured the muscle activities of the erector spinae(ES), deltoideus p. acromialis(DA), external oblique(EO), rectus abdominis(RA), rectus femoris(RF), latissimus dorsi(LD), pectoralis major(PM), and biceps femoris(BF). The research findings were as follows. ES and DA muscle activities were greatest during full plank performed with the WT(p<.05). EO, RA, RF, and PM muscle activities were greatest during full plank performed with the ST(p<.05). ES and DA muscle activities were greatest during elbow plank performed with the WT(p<.05). RF and PM muscle activities were greatest during elbow plank performed with the ST(p<.05). ES, EO, RA, RF, LD, PM, and BF muscle activities were greatest during side plank performed with the ST(p<.05). DA, EO, RA, RF, LD, PM, and BF muscle activities were greatest during reverse plank performed with the ST(p<.05). These results are expected to serve as reference materials for plank exercise applications in training programs for body muscle strengthening.

SRR(Social Relation Rank) and TS_SRR(Topic Sensitive_Social Relation Rank) Algorithm; toward Social Search (소셜 관계 랭크 및 토픽기반_소셜 관계 랭크 알고리즘; 소셜 검색을 향해)

  • Park, GunWoo;Jung, JeaHak;Lee, SangHoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.364-368
    • /
    • 2009
  • "소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.

Predicting Game Results using Machine Learning and Deriving Strategic Direction from Variable Importance (기계학습을 활용한 게임승패 예측 및 변수중요도 산출을 통한 전략방향 도출)

  • Kim, Yongwoo;Kim, Young‐Min
    • Journal of Korea Game Society
    • /
    • v.21 no.4
    • /
    • pp.3-12
    • /
    • 2021
  • In this study, models for predicting the final result of League of Legends game were constructed for each rank using data from the first 10 minutes of the game. Variable importance was extracted from the prediction models to derive strategic direction in early phase of the game. As a result, it was possible to predict final results with over 70% accuracy in all ranks. It was found that early game advantage tends to lead to the final win and this tendency appeared stronger as it goes to challenger ranks. Kill(death) was found to be the most influential factor for win, however, there were also variables whose importance rank changed according to rank. This indicates there is a difference in the strategic direction in the early stage of the game depending on the rank.

RankBoost Algorithm for Personalized Education of Chinese Characters on Smartphone (스마트폰 상에서의 개인화 학습을 위한 랭크부스트 알고리즘)

  • Kang, Dae-Ki;Chang, Won-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.70-76
    • /
    • 2010
  • In this paper, we propose a personalized Chinese character education system using RankBoost algorithm on a smartphone. In a typical Chinese character education scenario, a trainee is supplied with a finite number of Chinese characters as an input set in the beginning. And, as the training session repeats, the trainee will notice her/his difficult characters in the set which she/he hardly answers. Those characters reflect their personalized degrees of difficulty. Our proposed system constructs these personalized degrees of difficulty using RankBoost algorithm. In the beginning, the algorithm start with the set of Chinese characters, of which each is associated with the same weight values. As the training sessions are repeated, the algorithm increase the weights of Chinese characters that the trainee mistakes, thereby eventually constructs the personalized difficulty degrees of Chinese characters. The proposed algorithm maximizes the educational effects by having the trainee exposed to difficult characters more than easy ones.