• Title/Summary/Keyword: 랜삭

Search Result 3, Processing Time 0.015 seconds

Indoor environment recognition in depth image using domain knowledge (깊이 영상에서 도메인지식을 이용한 실내 환경 인식)

  • Kim, Su-Kyung;Choi, Hyung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.319-322
    • /
    • 2014
  • 본 논문에서는 깊이 카메라로 받아들인 입력 영상의 3차원 공간 내에서 벽면을 분리하는 방법을 제안한다. 본 논문에서 제안하는 벽면이 구분된 영상은 벽면에 프로젝터를 투사하는 등의 3차원 공간 활용에 용이하다. 입력 영상에서의 좌표 점을 이용하여 법선 벡터를 검출하고, 법선 벡터를 통해 평면을 분리한다. 분리된 평면들을 실내 환경에서 알 수 있는 도메인 지식들에 기반하여 벽면으로 구분 된다.

  • PDF

Matching for Cylinder Shape in Point Cloud Using Random Sample Consensus (Random Sample Consensus를 이용한 포인트 클라우드 실린더 형태 매칭)

  • Jin, YoungHoon
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.562-568
    • /
    • 2016
  • Point cloud data can be expressed in a specific coordinate system of a data set with a large number of points, to represent any form that generally has different characteristics in the three-dimensional coordinate space. This paper is aimed at finding a cylindrical pipe in the point cloud of the three-dimensional coordinate system using RANSAC, which is faster than the conventional Hough Transform method. In this study, the proposed cylindrical pipe is estimated by combining the results of parameters based on two mathematical models. The two kinds of mathematical models include a sphere and line, searching the sphere center point and radius in the cylinder, and detecting the cylinder with straightening of center. This method can match cylindrical pipe with relative accuracy; furthermore, the process is rapid except for normal estimation and segmentation. Quick cylinders matching could benefit from laser scanning and reverse engineering construction sectors that require pipe real-time estimates.

Matching for the Elbow Cylinder Shape in the Point Cloud Using the PCA (주성분 분석을 통한 포인트 클라우드 굽은 실린더 형태 매칭)

  • Jin, YoungHoon
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.392-398
    • /
    • 2017
  • The point-cloud representation of an object is performed by scanning a space through a laser scanner that is extracting a set of points, and the points are then integrated into the same coordinate system through a registration. The set of the completed registration-integrated point clouds is classified into meaningful regions, shapes, and noises through a mathematical analysis. In this paper, the aim is the matching of a curved area like a cylinder shape in 3D point-cloud data. The matching procedure is the attainment of the center and radius data through the extraction of the cylinder-shape candidates from the sphere that is fitted through the RANdom Sample Consensus (RANSAC) in the point cloud, and completion requires the matching of the curved region with the Catmull-Rom spline from the extracted center-point data using the Principal Component Analysis (PCA). Not only is the proposed method expected to derive a fast estimation result via linear and curved cylinder estimations after a center-axis estimation without constraint and segmentation, but it should also increase the work efficiency of reverse engineering.