• Title/Summary/Keyword: 랜덤 위상 함수

Search Result 17, Processing Time 0.021 seconds

Design and Fabrication of Binary Diffractive Optical Elements for the Creation of Pseudorandom Dot Arrays of Uniform Brightness (균일 밝기 랜덤 도트 어레이 생성을 위한 이진 회절광학소자 설계 및 제작)

  • Lee, Soo Yeon;Lee, Jun Ho;Kim, Young-Gwang;Rhee, Hyug-Gyo;Lee, Munseob
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • In this paper, we report the design and fabrication of binary diffractive optical elements (DOEs) for random-dot-pattern projection for Schlieren imaging. We selected the binary phase level and a pitch of 10 ㎛ for the DOE, based on cost effectiveness and ease of manufacture. We designed the binary DOE using an iterative Fourier-transform algorithm with binary phase optimization. During initial optimization, we applied a computer-generated pseudorandom dot pattern of uniform intensity as a target pattern, and found significant intensity nonuniformity across the field. Based on the evaluation of the initial optimization, we weighted the target random dot pattern with Gaussian profiles to improve the intensity uniformity, resulting in the improvement of uniformity from 52.7% to 90.8%. We verified the design performance by fabricating the designed binary DOE and a beam projector, to which the same was applied. The verification confirmed that the projector produced over 10,000 random dot patterns over 430 mm × 430 mm at a distance of 5 meters, as designed, but had a slightly less uniformity of 84.5%. The fabrication errors of the DOE, mainly edge blurring and spacing errors, were strong possibilities for the difference.

Design of Fresnelet Transform based on Wavelet function for Efficient Analysis of Digital Hologram (디지털 홀로그램의 효율적인 분해를 위한 웨이블릿 함수 기반 프레넬릿 변환의 설계)

  • Seo, Young-Ho;Kim, Jin-Kyum;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In this paper, we propose a Fresnel transform method using various wavelet functions to efficiently decompose digital holograms. After implementing the proposed wavelet function-based Fresnelet transforms, we apply it to the digital hologram and analyze the energy characteristics of the coefficients. The implemented wavelet transform-based Fresnelet transform is well suited for reconstructing and processing holograms which are optically obtained or generated by computer-generated hologram technique. After analyzing the characteristics of the spline function, we discuss wavelet multiresolution analysis method based on it. Through this process, we proposed a transform tool that can effectively decompose fringe patterns generated by optical interference phenomena. We implement Fresnelet transform based on wavelet function with various decomposition properties and show the results of decomposing fringe pattern using it. The results show that the energy distribution of the coefficients is significantly different depending on whether the random phase is included or not.

Signal Parameter Estimation via Transfer Matrix Analysis (전달 행렬 분석에 의한 신호변수 추정 기법 연구)

  • 조운현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.82-87
    • /
    • 1998
  • 여러 음원들에 의해 형성된 파동장내에서 각 신호음의 주파수 특성과 시간 지연 (time delay)을 추정할 수 있는 알고리즘을 개발하였다. 이 알고리즘의 관련 수식은 두 개의 상호 간섭하는 신호가 입사하고 여기에 주변 환경에 의한 랜덤 잡음이 첨가된다고 가정하여 유도되었으며 두 개 이상의 신호음이 있는 상황에 대해 확장이 가능하다. 본 논문에서 시간 지연이 일정한 수신 신호 영역에 등간격으로 놓여진 수신기로부터 각 센서에 수신된 신호의 스펙트럼은 M개의 센서에 대해 K개의 음원 스펙트럼과 K개의 조정 벡터(steering vector) 의 선형 조합(linear combination)으로 주파수에서 모델된다. 각 음원의 주파수 특성과 음원 으로 들어오는 신호의 입사각을 결정하기 위하여 본 알고리즘은 전달 행렬(transfer matrix) 을 계산하고 그 전달 행렬의 고유값(eigenvalue)과 고유벡터(eigenvector)를 분석한다. 이 고 유값들은 복소수이며 그 크기는 진폭 변환 계수를 결정한다. 위상은 수신기의 간격으로부터 시간 지연을 결정하는 기울기를 갖는 주파수의 선형 함수이다. 전달 행렬에의 입력 자료들 은 동일 간격 소자간의 cross-power spectra이다.

  • PDF

Design of optimal BPCGH using combination of GA and SA Algorithm (GA와 SA 알고리듬의 조합을 이용한 최적의 BPCGH의 설계)

  • 조창섭;김철수;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.468-475
    • /
    • 2003
  • In this Paper, we design an optimal binary phase computer generated hologram for Pattern generation using combined genetic algorithm and simulated annealing algorithm together. To design an optimal binary phase computer generated hologram, in searching process of the proposed method, the simple genetic algorithm is used to get an initial random transmittance function of simulated annealing algorithm. Computer simulation shows that the proposed algorithm has better performance than the genetic algorithm or simulated annealing algorithm of terms of diffraction efficiency

PDF-Distance Minimizing Blind Algorithm based on Delta Functions for Compensation for Complex-Channel Phase Distortions (복소 채널의 위상 왜곡 보상을 위한 델타함수 기반의 확률분포거리 최소화 블라인드 알고리듬)

  • Kim, Nam-Yong;Kang, Sung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5036-5041
    • /
    • 2010
  • This paper introduces the complex-version of an Euclidean distance minimization algorithm based on a set of delta functions. The algorithm is analyzed to be able to compensate inherently the channel phase distortion caused by inferior complex channels. Also this algorithm has a relatively small size of Gaussian kernel compared to the conventional method of using a randomly generated symbol set. This characteristic implies that the information potential between desired symbol and output is higher so that the algorithm forces output more strongly to gather close to the desired symbol. Based on 16 QAM system and phase distorted complex-channel models, mean squared error (MSE) performance and concentration performance of output symbol points are evaluated. Simulation results show that the algorithm compensates channel phase distortion effectively in constellation performance and about 5 dB enhancement in steady state MSE performance.

An Iterative Digital Image Watermarking Technique using Encrypted Binary Phase Computer Generated Hologram in the DCT Domain (DCT 영역에서 암호화된 이진 위상 컴퓨터형성 홀로그램을 이용한 반복적 디지털 영상 워터마킹 기술)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we proposed an iterative digital image watermarking technique using encrypted binary phase computer generated hologram in the discrete cosine transform(OCT) domain. For the embedding process of watermark, using simulated annealing algorithm, we would generate a binary phase computer generated hologram(BPCGH) which can reconstruct hidden image perfectly instead of hidden image and repeat the hologram and encrypt it through the XOR operation with key image that is ramdomly generated binary phase components. We multiply the encrypted watermark by the weight function and embed it into the DC coefficients in the DCT domain of host image and an inverse DCT is performed. For the extracting process of watermark, we compare the DC coefficients of watermarked image and original host image in the DCT domain and dividing it by the weight function and decrypt it using XOR operation with key image. And we recover the hidden image by inverse Fourier transforming the decrypted watermark. Finally, we compute the correlation between the original hidden image and recovered hidden image to determine if a watermark exits in the host image. The proposed watermarking technique use the hologram information of hidden image which consist of binary values and encryption technique so it is very secure and robust to the external attacks such as compression, noises and cropping. We confirmed the advantages of the proposed watermarking technique through the computer simulations.

Sweep Nonlinearity Estimation for High Range Resolution Millimeter-Wave Seeker Using Least Squares Method (최소 자승법을 이용한 고해상도 밀리미터파 탐색기의 비선형 위상 오차의 추정)

  • Yang, Hee-Seong;Chun, Joo-Hwan;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.56-67
    • /
    • 2012
  • In this thesis, to compensate the sweep nonlinearity occurring in the high resolution radar system using FMICW or FMCW, the method of the estimation of the nonlinearity is proposed. The nonlinear phase component caused by the nonlinear characteristic of the radar system is modelled as a linear combination of the sinusoidal functions consisting of various magnitudes and phases(systematic nonlinear phase error) and a random component(stochastic nonlinear phase error). From two IF signals that are measured respectively independently for two reference point targets lying in different distances which are known, a sparse linear equation is made and solved by least squares method to estimate the nonlinear phase component. The estimated component can be used for predistortion method to compensate the sweep nonlinearity.