In times of war or emergencies, weapon systems, such as radars, must receive stable power. This can be achieved using improved onboard portable power systems made of steel containers. However, a breakdown can occur in the event of random vibration during transportation via a vehicle or train. Electrical-power shortages or restrictions pose a significant threat to security. In this study, Composite Wheeled Vehicle(CWV) data and rail cargo data with Acceleration Spectral Density(ASD), specified in MIL-STD-810H METHOD 514.8, were interpreted as input data of the three-axis random vibration method using ANSYS 19.2. Modal analysis was performed up to 500 Hz, and deformations in modes 1 to 117 were calculated to utilize all ASD data. The maximum equivalent stress in the three-axis direction was obtained using a random vibration analysis. Similarly, the margin of safety was calculated using the derived equivalent stress and material properties. Overall, the analysis verified that the portable container designed for the power supply system satisfied the required vibration demands.
MEMS 고체 추력기 모듈은 MEMS 고체 추력기와 MEMS 추력기 제어보드로 구성된다. MEMS 고체 추력기는 학문적 연구개발 목적으로 개발되었기 때문에 발사환경을 고려한 설계 및 시험이 이루어지지 않아 이를 큐브위성에 탑재 및 궤도검증을 위해서는 설계 시 추력기 모듈로의 발사 하중이 최소화 되도록 하는 위성체 시스템 레벨에서의 설계노력이 요구된다. 본 논문에서는 MEMS 고체 추력기의 조립 및 시험과정에서의 탈장착 용이성 및 발사환경에서의 구조건전성 확보를 위해 브래킷을 이용한 구조설계를 제안하였으며, 준정적해석과 랜덤해석 및 진동시험을 통해 설계의 유효성을 검증하였다. 또한, 본 논문에서 제안한 스프링 핀을 이용한 MEMS 추력기와의 전기적 체결방식은 발사 진동에서의 구조건전성 확보에 유효함을 입증하였다.
By applying METHOD 514.8 of the US military standard MIL-STD-810H, vibration analysis of the winding core automatic feeding device was performed during vehicle transportation. The contact point between the LM guide and main support frame was weak in the vertical axis, transverse axis, and longitudinal axis during the transportation of the automatic winding core feeder vehicle, and the maximum equivalent stress was 236.31 MPa in the longitudinal axis. When random vibration was applied, the safety margin in the longitudinal direction was 0.26, indicating low safety. The safety margin was changed by increasing the damage factor to 0.1. Finally, the safety margin was improved to 3.48 to secure safety. Resonance occurred with a Q factor of 9.34 in the harmonic response to which the RMS value of the ASD data was input, and the vertical axis safety margin was derived as 0.16. When the damping factor was 0.15, the Q factor was 3.37, and resonance was avoided with a safety margin of 6.62.
초소형 위성체의 태생적 공간 제약으로 탑재 전장품은 발사진동환경 하 구조건전성 확보를 위한 보강설계 적용에 한계가 존재하며, 피로파괴에 취약한 고집적 소자의 실장으로 고신뢰도의 평가기법이 요구된다. 종래 전장품 구조건전성 평가를 위해 Steinberg 피로파괴 이론이 적용되고 있으나 최근 연구들에서 이론적 한계점들이 보고되고 있다. 본 논문에서는 상기 이론의 한계점을 극복한 임계변형률 이론기반 방법론을 적용하여 초소형 SAR 군집위성 S-STEP(Small SAR Technology Experimental Project)의 X대역 SAR 탑재체 구성품 중 DCU(Digital Control Unit)를 설계하였다. 설계 유효성 검증을 위해 단순화된 모델링 기법을 기반으로 모드 해석, 랜덤 해석을 수행하였다. 적용한 방법론을 기반으로 해석 결과분석 및 안전여유 도출과 발사진동환경시험 전후 기능시험을 통해 최종적으로 전장품의 구조건전성이 확보됨을 입증하였다.
The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.
A nanosatellite designed by the Korea Microgravity Science Laboratory (KMSL) is currently under development. The KMSL nanosatellite is designed to perform two different scientific missions in space. To successfully complete missions, a variety of tests must be conducted to verify the performance of the designed satellite before launch. As part of the qualification test campaign, the KMSL nanosatellite underwent high level vibrational tests (to comply with Falcon 9 qualification level) to demonstrate the integrity of the system. The purpose of this study is to demonstrate that the primary structure and all electronic and mechanical components can withstand the vibrations and the loads experienced during the launch period. To this end, the KMSL nanosatellite was exposed to static and dynamic loads and various types of vibrations that are inevitably produced during the space vehicle launch period. The vibration test results clearly demonstrated that all avionics and mechanical components can withstand the vibrations and the loads applied to the KMSL nanosatellite's body through a Pico-satellite Orbital Deployer (POD).
A crush switch assembly(CSA) connected to an impact fuze provides electrical signal for detonation of the loaded main charge when an impact with the target is detected. Because the CSA experiences continuous changes in flight environment such as changes in velocity, vibration, and stresses, it is necessary to accurately predict the behavior of the fuze to maintain functionality during flight and to detonate when necessary. In this paper, random vibration analysis for flight environment and impact analysis on target hit are performed using FEA. Then, high speed impact tests are performed with the original and scaled down models to ensure operation validation of the manufactured products. The test results are then compared with M&S results to verify the capability of currently modeled CSA.
The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, electronic equipment (KOMPSAT 2, RDU : Remote Drive Unit) of a satellite consists of aluminum case containing PCB (Printed circuit boards). Each PCB has resistors and IC (Integrated circuits). Noise and vibration of wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation. random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when tile frequency of random vibration meets with natural frequency of PCB. fatigue fracture nay occur in the part of solder joint. The launching environment, thus. needs to be carefully considered when designing the electronic equipment of a satellite. In general. the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM(Finite Element Method) or vibration test. In this study. the natural frequency and dynamic deflection of PCB are measured by FEM, aud the safety of the electronic components of PCB is being evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs from the electronic equipments of a satellite to home electronics.
발사체의 구조해석적인 측면에서 외부하중에 따른 발사체의 반응을 파악하는 것은 중요한 일이다. 기본적으로 발사체는 응력집중이나 내부 모듈간의 변위 간섭 등이 일어나지 않게 설계되어야한다. 이를 위해서는 외부하중에 관한 연구가 선행되어야 한다. 발사체에 작용하는 외부하중 중 연소 및 배기에 의해 발생하는 음향하중은 통계적 방법으로 다루어야 하는 랜덤 하중이다. 본 연구에서는 발사시 작용하는 음향하중에 대하여 하중 함수를 구성하고, 이를 이용하여 발사체의 하중해석을 수행하였다. 음원 할당 방법으로 음향하중을 추정하여 하중함수를 구성하였고, 이를 발사체의 유한요소 모델에 적용하였다. 응력해석을 이용하여 발사체의 구조 강성을 확인할 수 있었으며, 발사체 각 섹션의 경계면에서의 가속도 파워 스펙트럴 밀도함수를 구할 수 있었다. 이러한 결과를 이용하여 각 섹션의 진동 시험에 필요한 스펙을 도출할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.