• Title/Summary/Keyword: 락 드릴

Search Result 4, Processing Time 0.016 seconds

Sensor Information Transmission Technology of Rod Pipe (Rod pipe의 센서 정보 전송기술)

  • Yun, Eon-Ho;Lee, Sang-Rak;Choi, Han-Go
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.49-50
    • /
    • 2021
  • 광산 분야 등의 채굴을 위한 천공 과정에서 현재 진행 중인 천공 위치의 실시간 측정이 요구되는데 이를 위해 드릴 후면에 부착된 센서 정보를 로드 파이프를 통해 지상으로 전송할 수 있는 통신방식을 제안하였다. 드릴 후면에 장착된 센서에서 검출된 신호는 송신부에서 변조를 통해 로드 파이프로 전송하고, 수신부에서는 이에 대응되는 복조 과정을 통해 센서 데이터를 추출하였다. 제안된 방법의 검증을 위해 설계된 장치를 사용하여 실험을 수행하였으며, 실험 결과 제안된 방법에 의한 데이터 송수신이 정상적으로 동작함을 확인하였다.

Modelling and Test of Down-the-Hole Hammer (다운더홀(DTH) 해머의 모델링 및 실험)

  • Hwang, U.K.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.34-38
    • /
    • 2015
  • Research and development of mineral resource related products has progressed with the increased need to develop mineral resources. The DTH hammer is one a resultant product. However, due to particular work conditions of underground drilling, it is difficult to obtain direct data on the DTH Hammer. A DTH drill rig requires a lot of money and time for actual testing. This thesis aimed to resolve this problem by using CAE. First, the structure of the DTH hammer and the movement was analyzed. Next, a standard model based on simulation was proposed and then experimentation and comparison verification was conducted. In addition, the verified models were applied to products of various sizes, and the models used in simulation were compared by conducting field tests.

Development of Uneven Excavation Method for Reinforcement of Ground Slope (사면보강을 위한 요철형 암반굴착 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, required drill bits and excavation methods were developed for an uneven drilling method that can solve the problem of performance degradation of rock bolts. The developed drill bit's excavation performance was verified using rock with a strength of 100 MPa or more. In addition, for the relative evaluation of the uneven excavation method, experimental specimens were prepared for models with and without irregularities, and tests were performed. As a result of the experiment, the model with unevenness exhibited an average critical draw resistance of 801.6 kN, which is about 1.7 times the value of 468.7 kN for the model without unevenness, thus confirming the effect sufficiently. Therefore, it is expected that the resistance performance will significantly increase despite an increase in the uneven hole diameter of 20 mm. In the future, the results of this study could be used as basic data when performing other studies using numerical analysis models and performance verification through experiments to obtain an optimized rock forming method.

Optimization of Down-the-Hole Hammer Using Experimental Design Method (실험설계법을 이용한 다운더홀(DTH) 해머의 최적화)

  • Hwang, Un Kyoo;Lim, Jong Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.603-611
    • /
    • 2016
  • Research and development of mineral-resource-related products has progressed with the increased need to develop mineral resources. The DTH hammer is a resultant product. However, owing to particular work conditions of underground drilling, it is difficult to obtain direct data on the DTH hammer. A DTH drill rig requires a significant amount of money and time for actual testing. This thesis aimed to resolve this problem by using CAE. In a previous paper, the structure of the DTH hammer and its movement were analyzed, and a standard model based on simulation was proposed. Then, experimentation and comparison verification were conducted. In this paper, by using an experimental design method, we derived a control factor of the impact force and efficiency of the DTH hammer and attempted to optimize the design. As a result, the impact energy increased by 14.9%, and the efficiency increased by 3.3%.