• Title/Summary/Keyword: 라플라스 분포

Search Result 49, Processing Time 0.019 seconds

Voice Activity Detection employing the Generalized Normal-Laplace Distribution (일반화된 정규-라플라스 분포를 이용한 음성검출기)

  • Kim, Sang-Kyun;Kwon, Jang-Woo;Lee, Sangmin
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.294-299
    • /
    • 2014
  • In this paper, we propose a novel algorithm to improve the performance of a voice activity detection(VAD) which is based on the generalized normal-Laplace(GNL) distribution. In our algorithm, the probability density function(PDF) of the noisy speech signal is represented by the GNL distribution and the variance of the speech and noise of GNL distribution are estimated using higher order moments. Experimental results show that the proposed algorithm yields better results compared to the conventional VAD algorithms.

Validity assessment of VaR with Laplacian distribution (라플라스 분포 기반의 VaR 측정 방법의 적정성 평가)

  • Byun, Bu-Guen;Yoo, Do-Sik;Lim, Jongtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1263-1274
    • /
    • 2013
  • VaR (value at risk), which represents the expectation of the worst loss that may occur over a period of time within a given level of confidence, is currently used by various financial institutions for the purpose of risk management. In the majority of previous studies, the probability of return has been modeled with normal distribution. Recently Chen et al. (2010) measured VaR with asymmetric Laplacian distribution. However, it is difficult to estimate the mode, the skewness, and the degree of variance that determine the shape of an asymmetric Laplacian distribution with limited data in the real-world market. In this paper, we show that the VaR estimated with (symmetric) Laplacian distribution model provides more accuracy than those with normal distribution model or asymmetric Laplacian distribution model with real world stock market data and with various statistical measures.

Modeling sharply peaked asymmetric multi-modal circular data using wrapped Laplace mixture (겹친라플라스 혼합분포를 통한 첨 다봉형 비대칭 원형자료의 모형화)

  • Na, Jong-Hwa;Jang, Young-Mi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.863-871
    • /
    • 2010
  • Until now, many studies related circular data are carried out, but the focuses are mainly on mildly peaked symmetric or asymmetric cases. In this paper we studied a modeling process for sharply peaked asymmetric circular data. By using wrapped Laplace, which was firstly introduced by Jammalamadaka and Kozbowski (2003), and its mixture distributions, we considered the model fitting problem of multi-modal circular data as well as unimodal one. In particular we suggested EM algorithm to find ML estimates of the mixture of wrapped Laplace distributions. Simulation results showed that the suggested EM algorithm is very accurate and useful.

Quantile regression using asymmetric Laplace distribution (비대칭 라플라스 분포를 이용한 분위수 회귀)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1093-1101
    • /
    • 2009
  • Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

  • PDF

Comparison of Laplace and Double Pareto Penalty: LASSO and Elastic Net (라플라스와 이중 파레토 벌점의 비교: LASSO와 Elastic Net)

  • Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.975-989
    • /
    • 2014
  • Lasso (Tibshirani, 1996) and Elastic Net (Zou and Hastie, 2005) have been widely used in various fields for simultaneous variable selection and coefficient estimation. Bayesian methods using a conditional Laplace and a double Pareto prior specification have been discussed in the form of hierarchical specification. Full conditional posterior distributions with each priors have been derived. We compare the performance of Bayesian lassos with Laplace prior and the performance with double Pareto prior using simulations. We also apply the proposed Bayesian hierarchical models to real data sets to predict the collapse of governments in Asia.

Mixture Distributions for Image Denoising in Wavelet Domain (웨이블릿 영역에서 혼합 모델을 사용한 영상 잡음 제거)

  • Bae, Byoung-Suk;Kang, Moon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.89-90
    • /
    • 2008
  • AWGN(Addictive white gaussian noise)에 의해 영상은 자주 훼손되곤 한다. 최근 이를 복원하기위해 웨이블릿(Wavelet) 영역에서의 베이시안(Bayesian) 추정법이 연구되고 있다. 웨이블릿 변환된 영상 신호의 밀도 함수(pdf)는 표족한 첨두와 긴 꼬리(long-tail)를 갖는 경망이 있다. 이러한 사전 밀도 함수(a priori probability density function)를 상황에 적합하게 추정한다면 좋은 성능의 복원 결과를 얻을 수 있다. 빈번이 제안되는 릴도 함수로 가우시안(Gaussian) 분포 참수와 라플라스(Laplace) 분포 함수가 있다. 이들 각각의 모델은 훌륭히 변환 계수들을 모델링하며 나름대로의 장점을 나타낸다. 본 연구에서는 가우시안 분포와 라플라스(Laplace) 분포의 혼합 분포 모델을 밀도 함수로 제안하여, 이 들의 장점을 종합하였다. 이를 MAP(Maximum a Posteriori) 추정 방법에 적용하여 잡음을 제거 하였다. 그 결과 기존의 알고리즘에 비해 시각적인 면(Visual aspect), 수치적인 면(PSNR), 그리고 연산량(Complexity) 측면에서 망상된 결과를 얻었다.

  • PDF

Simulation of the Phase-Type Distribution Based on the Minimal Laplace Transform (최소 표현 라플라스 변환에 기초한 단계형 확률변수의 시뮬레이션에 관한 연구)

  • Sunkyo Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • The phase-type, PH, distribution is defined as the time to absorption into a terminal state in a continuous-time Markov chain. As the PH distribution includes family of exponential distributions, it has been widely used in stochastic models. Since the PH distribution is represented and generated by an initial probability vector and a generator matrix which is called the Markovian representation, we need to find a vector and a matrix that are consistent with given set of moments if we want simulate a PH distribution. In this paper, we propose an approach to simulate a PH distribution based on distribution function which can be obtained directly from moments. For the simulation of PH distribution of order 2, closed-form formula and streamlined procedures are given based on the Jordan decomposition and the minimal Laplace transform which is computationally more efficient than the moment matching methods for the Markovian representation. Our approach can be used more effectively than the Markovian representation in generating higher order PH distribution in queueing network simulation.

AWGN Removal using Laplace Distribution and Weighted Mask (라플라스 분포와 가중치 마스크를 이용한 AWGN 제거)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1846-1852
    • /
    • 2021
  • In modern society, various digital devices are being distributed in a wide range of fields due to the fourth industrial revolution and the development of IoT technology. However, noise is generated in the process of acquiring or transmitting an image, and not only damages the information, but also affects the system, causing errors and incorrect operation. AWGN is a representative noise among image noise. As a method for removing noise, prior research has been conducted, and among them, AF, A-TMF, and MF are the representative methods. Existing filters have a disadvantage that smoothing occurs in areas with high frequency components because it is difficult to consider the characteristics of images. Therefore, the proposed algorithm calculates the standard deviation distribution to effectively eliminate noise even in the high frequency domain, and then calculates the final output by applying the probability density function weight of the Laplace distribution using the curve fitting method.

Advanced Rake Receiver for Multiple Access M-ary Modulation UWB System in the IEEE Multipath Channel (IEEE 다중경로 채널에서 다중접속 M진 변조 초광대역 시스템을 위한 개선된 Rake 수신기)

  • An, Jinyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.12-19
    • /
    • 2014
  • In this paper, an advanced UWB (ultra wideband) Rake receiving technique based on the statistical distribution model is studied in the M-ary TH-PPM system with multiple access interference (MAI). In order to improve the performance of the Rake receiver, the stochastic model, which can flexibly express the behavior of MAI-plus-noise, is required and the Laplace distribution and the generalized normal Laplace (GNL) model applied by the curtosis matching method are considered. The performance of Rake receiver based on each probability distribution is evaluated in the IEEE multipath fading channel and compared to that of the conventional Rake receiver. The suggested approach shows a superior BER performance than that of conventional Rake receiver.

Bayesian inference on multivariate asymmetric jump-diffusion models (다변량 비대칭 라플라스 점프확산 모형의 베이지안 추론)

  • Lee, Youngeun;Park, Taeyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Asymmetric jump-diffusion models are effectively used to model the dynamic behavior of asset prices with abrupt asymmetric upward and downward changes. However, the estimation of their extension to the multivariate asymmetric jump-diffusion model has been hampered by the analytically intractable likelihood function. This article confronts the problem using a data augmentation method and proposes a new Bayesian method for a multivariate asymmetric Laplace jump-diffusion model. Unlike the previous models, the proposed model is rich enough to incorporate all possible correlated jumps as well as mention individual and common jumps. The proposed model and methodology are illustrated with a simulation study and applied to daily returns for the KOSPI, S&P500, and Nikkei225 indices data from January 2005 to September 2015.