• Title/Summary/Keyword: 라우팅시스템

Search Result 483, Processing Time 0.03 seconds

Using Genetic Algorithms for Routing Metric in Wireless Mesh Network (무선 메쉬 네트워크에서 유전 알고리즘을 이용한 라우팅 메트릭 기법)

  • Yoon, Chang-Pyo;Shin, Hyo-Young;Ryou, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • Wireless mesh network technology with transmission speeds similar to wired and wireless technology means to build, compared with wired networks, building a more efficient network to provide convenience and flexibility. The wireless mesh network router nodes in the energy impact of the mobility is less constrained and has fewer features entail. However, the characteristics of various kinds due to network configuration settings and the choice of multiple paths that can occur when the system overhead and there are many details that must be considered. Therefore, according to the characteristics of these network routing technology that is reflected in the design and optimization of the network is worth noting. In this paper, a multi-path setting can be raised in order to respond effectively to the problem of the router node data loss and bandwidth according to traffic conditions and links to elements of the hop count evaluation by using a genetic algorithm as a workaround for dynamic routing the routing metric for wireless mesh network scheme is proposed.

Efficient All-to-All Personalized Communication Algorithms in Wormhole-Routed Networks (웜홀 방식의 네트워크에서 효율적인 다대다 개별적 통신 알고리즘)

  • 김시관;강오한;정종인
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.359-369
    • /
    • 2003
  • We present efficient generalized algorithms for all-to-all personalized communication operations in a 2D torus. All-to-all personalized communication, or complete exchange, is at the heart of numerous applications, such as matrix transposition, Fast Fourier Transform(FFT), and distributed table lookup. Some algorithms have been Presented when the number of nodes is power-of-2 or multiple-of-four form, but there has been no result for general cases yet. We first present complete exchange algorithm called multiple-Hop-2D when the number of nodes is in the form of multiple-of-two. Then by extending this algorithm, we present two algorithms for an arbitrary number of nodes. Split-and-Merge algorithm first splits the whole network into zones. After each zone performs complete exchange, merge is applied to finish the desired complete exchange. By handling extra steps in Double-Hop-2D algorithm, Modified Double-Hop-2D algorithm performs complete exchange operation for general cases. Finally, we compare the required start-up time for these algorithms.

Improvement of OLSR Through MIMC's Decreased Overhead in MANET (모바일 애드 혹 네트워크 환경 하에서 멀티인터페이스 멀티채널의 오버헤드 감소를 통한 OLSR의 성능 개선)

  • Jang, Jae-young;Kim, Jung-ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.3
    • /
    • pp.55-70
    • /
    • 2016
  • The most critical research issue in MANET environment is on supporting reliable communication between various devices. Various Multi-Hop Routing Protocol studies have proceeded. However, some problems you might have found when you use the existing link state routing technique are that it increases Control Message Overhead and it is unstable when node moves in CR circumstance which has transformation of using channel and MIMC circumstance which uses a number of interfaces. This essay offers a technique which is based on On-Demand Hello and the other technique which used Broadcast Interface of optimization as a solution to decrease Control Message Overhead. Also it proposes Quick Route Restoration technique which is utilized by GPS and MPR Selection technique which consider mobility as a solution of stable communication when node moves. Those offered Routing Protocol and OPNET based simulator result will be expected to be an excellent comparison in related research fields.

Modeling and Simulation of LEACH Protocol to Analyze DEVS Kernel-models in Sensor Networks

  • Nam, Su Man;Kim, Hwa Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.97-103
    • /
    • 2020
  • Wireless sensor networks collect and analyze sensing data in a variety of environments without human intervention. The sensor network changes its lifetime depending on routing protocols initially installed. In addition, it is difficult to modify the routing path during operating the network because sensors must consume a lot of energy resource. It is important to measure the network performance through simulation before building the sensor network into the real field. This paper proposes a WSN model for a low-energy adaptive clustering hierarchy protocol using DEVS kernel models. The proposed model is implemented with the sub models (i.e. broadcast model and controlled model) of the kernel model. Experimental results indicate that the broadcast model based WSN model showed lower CPU resource usage and higher message delivery than the broadcast model.

A Comparative Study on Off-Path Content Access Schemes in NDN (NDN에서 Off-Path 콘텐츠 접근기법들에 대한 성능 비교 연구)

  • Lee, Junseok;Kim, Dohyung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.12
    • /
    • pp.319-328
    • /
    • 2021
  • With popularization of services for massive content, the fundamental limitations of TCP/IP networking were discussed and a new paradigm called Information-centric networking (ICN) was presented. In ICN, content is addressed by the content identifier (content name) instead of the location identifier such as IP address, and network nodes can use the cache to store content in transit to directly service subsequent user requests. As the user request can be serviced from nearby network caches rather than from far-located content servers, advantages such as reduced service latency, efficient usage of network bandwidth, and service scalability have been introduced. However, these advantages are determined by how actively content stored in the cache can be utilized. In this paper, we 1) introduce content access schemes in Named-data networking, one of the representative ICN architectures; 2) in particular, review the schemes that allow access to cached content away from routing paths; 3) conduct comparative study on the performance of the schemes using the ndnSIM simulator.

Design of a High-Speed Data Packet Allocation Circuit for Network-on-Chip (NoC 용 고속 데이터 패킷 할당 회로 설계)

  • Kim, Jeonghyun;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.459-461
    • /
    • 2022
  • One of the big differences between Network-on-Chip (NoC) and the existing parallel processing system based on an off-chip network is that data packet routing is performed using a centralized control scheme. In such an environment, the best-effort packet routing problem becomes a real-time assignment problem in which data packet arriving time and processing time is the cost. In this paper, the Hungarian algorithm, a representative computational complexity reduction algorithm for the linear algebraic equation of the allocation problem, is implemented in the form of a hardware accelerator. As a result of logic synthesis using the TSMC 0.18um standard cell library, the area of the circuit designed through case analysis for the cost distribution is reduced by about 16% and the propagation delay of it is reduced by about 52%, compared to the circuit implementing the original operation sequence of the Hungarian algorithm.

  • PDF

QoS Routing Protocol Based on Virtual Grids and MultiPaths for Mobile Sinks in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 위한 가상 그리드와 다중 경로 기반의 QoS 라우팅 프로토콜)

  • Yim, Jinhyuk;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.11
    • /
    • pp.385-392
    • /
    • 2016
  • Recently, Expectation Area-based Real-time Routing (EAR2) protocol has been proposed to support real-time routing in wireless sensor networks. EAR2 considers the expectation area of a mobile sink and uses flooding within the expectation area. However, flooding leads to excessive energy consumption and causes long delay against real-time routing. Moreover, since EAR2 uses single path to the expectation area, it is difficult to support reliable routing in sensor networks with high link failures. Thus, to overcome these limitation of EAR2, this paper proposes a reliable and real-time routing protocol based on virtual grids and multipath for mobile sinks. To support real-time routing, the proposed protocol considers expectation grids belonged to the expectation area. Instead of flooding within the expectation area, the proposed protocol uses multicasting to the expectation grids and single hop forwarding in an expectation grid because the multicasting can save much energy and the single hop forwarding can provide short delay. Also, the proposed protocol uses multipath to the expectation grids to deal with link failures for supporting reliable routing. Simulation results show that the proposed protocol is superior to the existing protocols.

A Study on the Parallel Routing in Hybrid Optical Networks-on-Chip (하이브리드 광학 네트워크-온-칩에서 병렬 라우팅에 관한 연구)

  • Seo, Jung-Tack;Hwang, Yong-Joong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.25-32
    • /
    • 2011
  • Networks-on-chip (NoC) is emerging as a key technology to overcome severe bus traffics in ever-increasing complexity of the Multiprocessor systems-on-chip (MPSoC); however traditional electrical interconnection based NoC architecture would be faced with technical limits of bandwidth and power consumptions in the near future. In order to cope with these problems, a hybrid optical NoC architecture which use both electrical interconnects and optical interconnects together, has been widely investigated. In the hybrid optical NoCs, wormhole switching and simple deterministic X-Y routing are used for the electrical interconnections which is responsible for the setup of routing path and optical router to transmit optical data through optical interconnects. Optical NoC uses circuit switching method to send payload data by preset paths and routers. However, conventional hybrid optical NoC has a drawback that concurrent transmissions are not allowed. Therefore, performance improvement is limited. In this paper, we propose a new routing algorithm that uses circuit switching and adaptive algorithm for the electrical interconnections to transmit data using multiple paths simultaneously. We also propose an efficient method to prevent livelock problems. Experimental results show up to 60% throughput improvement compared to a hybrid optical NoC and 65% power reduction compared to an electrical NoC.

Designing of Network based Tiny Ubiquitous Networked Systems (네트워크 기반의 소형 유비쿼터스 시스템의 개발)

  • Hwang, Kwang-Il;Eom, Doo-Seop
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.3
    • /
    • pp.141-152
    • /
    • 2007
  • In this paper, we present a network-oriented lightweight real-time system, which is composed of an event-driven operating system called the Embedded Lightweight Operating System (ELOS) and a generic multi hop ad hoc routing protocol suite. In the ELOS, a conditional preemptive FCFS scheduling method with a guaranteed time slot is designed for efficient real-time processing. For more elaborate configurations, we reinforce fault tolerance by supplementing semi-auto configuration using wireless agent nodes. The developed hardware platform is also introduced, which is a scalable prototype constructed using off-the-shelf components. In addition, in order to evaluate the performance of the proposed system, we developed a ubiquitous network test-bed on which several experiments with respect to various environments are conducted. The results show that the ELOS is considerably favorable for tiny ubiquitous networked systems with real-time constraints.

A Dynamic Transaction Routing Algorithm with Primary Copy Authority (주사본 권한을 이용한 동적 트랜잭션 분배 알고리즘)

  • Kim, Ki-Hyung;Cho, Hang-Rae;Nam, Young-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1067-1076
    • /
    • 2003
  • Database sharing system (DSS) refers to a system for high performance transaction processing. In DSS, the processing nodes are locally coupled via a high speed network and share a common database at the disk level. Each node has a local memory and a separate copy of operating system. To reduce the number of disk accesses, the node caches database pages in its local memory buffer. In this paper, we propose a dynamic transaction routing algorithm to balance the load of each node in the DSS. The proposed algorithm is novel in the sense that it can support node-specific locality of reference by utilizing the primary copy authority assigned to each node; hence, it can achieve better cache hit ratios and thus fewer disk I/Os. Furthermore, the proposed algorithm avoids a specific node being overloaded by considering the current workload of each node. To evaluate the performance of the proposed algorithm, we develop a simulation model of the DSS, and then analyze the simulation results. The results show that the proposed algorithm outperforms the existing algorithms in the transaction processing rate. Especially the proposed algorithm shows better performance when the number of concurrently executed transactions is high and the data page access patterns of the transactions are not equally distributed.