• Title/Summary/Keyword: 라쏘 회귀모형

Search Result 3, Processing Time 0.018 seconds

Machine Learning Prediction of Economic Effects of Busan's Strategic Industry through Ridge Regression and Lasso Regression (릿지 회귀와 라쏘 회귀 모형에 의한 부산 전략산업의 지역경제 효과에 대한 머신러닝 예측)

  • Yi, Chae-Deug
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.197-215
    • /
    • 2021
  • This paper analyzes the machine learning predictions of the economic effects of Busan's strategic industries on the employment and income using the Ridge Regression and Lasso Regression models with regulation terms. According to the Ridge estimation and Lasso estimation models of employment, the intelligence information service industry such as the service platform, contents, and smart finance industries and the global tourism industry such as MICE and specialized tourism are predicted to influence on the employment in order. However, the Ridge and Lasso regression model show that the future transportation machine industry does not significantly increase the employment and income since it is the primitive investment industry. The Ridge estimation models of the income show that the intelligence information service industry and global tourism industry are also predicted to influence on the income in order. According to the Lasso estimation models of income, four strategic industries such as the life care, smart maritime, the intelligence machine, and clean tech industry do not influence the income. Furthermore, the future transportation machine industry may influence the income negatively since it is the primitive investment industry. Thus, we have to select the appropriate economic objectives and priorities of industrial policies.

Lasso Regression of RNA-Seq Data based on Bootstrapping for Robust Feature Selection (안정적 유전자 특징 선택을 위한 유전자 발현량 데이터의 부트스트랩 기반 Lasso 회귀 분석)

  • Jo, Jeonghee;Yoon, Sungroh
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.557-563
    • /
    • 2017
  • When large-scale gene expression data are analyzed using lasso regression, the estimation of regression coefficients may be unstable due to the highly correlated expression values between associated genes. This irregularity, in which the coefficients are reduced by L1 regularization, causes difficulty in variable selection. To address this problem, we propose a regression model which exploits the repetitive bootstrapping of gene expression values prior to lasso regression. The genes selected with high frequency were used to build each regression model. Our experimental results show that several genes were consistently selected in all regression models and we verified that these genes were not false positives. We also identified that the sign distribution of the regression coefficients of the selected genes from each model was correlated to the real dependent variables.

Forecasting Korea's GDP growth rate based on the dynamic factor model (동적요인모형에 기반한 한국의 GDP 성장률 예측)

  • Kyoungseo Lee;Yaeji Lim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.255-263
    • /
    • 2024
  • GDP represents the total market value of goods and services produced by all economic entities, including households, businesses, and governments in a country, during a specific time period. It is a representative economic indicator that helps identify the size of a country's economy and influences government policies, so various studies are being conducted on it. This paper presents a GDP growth rate forecasting model based on a dynamic factor model using key macroeconomic indicators of G20 countries. The extracted factors are combined with various regression analysis methodologies to compare results. Additionally, traditional time series forecasting methods such as the ARIMA model and forecasting using common components are also evaluated. Considering the significant volatility of indicators following the COVID-19 pandemic, the forecast period is divided into pre-COVID and post-COVID periods. The findings reveal that the dynamic factor model, incorporating ridge regression and lasso regression, demonstrates the best performance both before and after COVID.