• 제목/요약/키워드: 라벨

검색결과 729건 처리시간 0.035초

세미감독형 학습 기법을 사용한 소프트웨어 결함 예측 (Software Fault Prediction using Semi-supervised Learning Methods)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.127-133
    • /
    • 2019
  • 소프트웨어 결함 예측 연구들의 대부분은 라벨 데이터를 훈련 데이터로 사용하는 감독형 모델에 관한 연구들이다. 감독형 모델은 높은 예측 성능을 지니지만 대부분 개발 집단들은 충분한 라벨 데이터를 보유하고 있지 않다. 언라벨 데이터만 훈련에 사용하는 비감독형 모델은 모델 구축이 어렵고 성능이 떨어진다. 훈련 데이터로 라벨 데이터와 언라벨 데이터를 모두 사용하는 세미 감독형 모델은 이들의 문제점을 해결한다. Self-training은 세미 감독형 기법들 중 여러 가정과 제약조건들이 가장 적은 기법이다. 본 논문은 Self-training 알고리즘들을 이용해 여러 모델들을 구현하였으며, Accuracy와 AUC를 이용하여 그들을 평가한 결과 YATSI 모델이 가장 좋은 성능을 보였다.

객체 분할 기법을 활용한 자동 라벨링 구축 (Auto Labelling System using Object Segmentation Technology)

  • 문준휘;박성현;최지영;신원선;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.222-224
    • /
    • 2022
  • 객체 분할 분야의 딥러닝 기반 컴퓨터 비전 응용들은 성능을 향상하기 위하여 STOA 기법들이 사전학습하여 배포한 하이퍼파라미터와 모델을 통해 학습하는 전이학습 방법을 사용한다. 이 과정에서 사용되는 커스텀 데이터 셋들은 Ground Truth 정보를 생성하기 위한 라벨링 작업에서 시간이나 라벨러등의 많은 자원을 필요로 한다. 본 고에서는 딥러닝 신경망에서 사용되는 커스텀 데이터 셋 구축을 위하여 시간이나 라벨러등의 자원을 적게 사용할 수 있도록 객체 분할 기법을 활용한 자동 라벨링 구축 방법을 제시한다.

  • PDF

삼킴 장애 진단을 위한 의료영상 관리 및 라벨링 시스템 개발 (Development of medical image management and labeling system for the diagnosis of dysphagia)

  • 임동욱;이충섭;노시형;박철;김민수;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.322-325
    • /
    • 2022
  • 삼킴 장애 환자는 뇌졸중, 치매, 외상성 뇌손상, 파킨슨병, 암이 주요 원인으로 급속히 증가하고 있다. 특히 고령화 사회가 되면서 더욱 삼킴 장애 환자는 늘어날 것으로 전망하고 있다. 고령 환자의 삼킴 이상의 진단을 위해 가장 많이 사용하고 있는 검사법으로는 비디오 조영 삼킴 검사(VFSS)이다. VFSS는 진단에 있어서 숙련된 전문의가 필요하기 때문에 대학병원 급에서 주로 시행하며, 고령 환자에게는 분석 결과를 상담받을 때까지 오랜 시간을 소요해야하는 문제점들이 있다. 본 논문에서는 삼킴 장애 진단을 위한 의료영상 관리 및 라벨링 시스템에 대해서 기술한다. 이를 구현하기 위해 서버에서 대용량 멀티프레임 영상을 성능 저하 없이 핸들링 하고 라벨링 데이터 생성을 위한 라벨링 툴을 구현하였다. 차후 라벨링 데이터를 생성하고 학습을 통하여 삼킴 장애 진단을 위한 인공지능 모델을 개발하고자 한다.

삼킴장애 분석을 위한 멀티프레임 의료영상 라벨링 웹 애플리케이션 구현 (Implementation of Multi-frame Medical Image Labeling Web Application for Swallowing Disorder Analysis)

  • 임동욱;이충섭;노시형;박철;김민수;문희경;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.8-10
    • /
    • 2023
  • 삼킴장애는 음식물이 입에서 식도로 가지않고 걸리거나 기도(Trachea)로 흡입되는 문제를 갖는 상태이다. 특히 노인이나 신경계 질환을 앓는 환자의 경우 기도로 흡입된 음식덩이가 폐렴을 일으키고 결국에는 사망으로 이어지기에 적절한 치료와 관리가 요구된다. 보통 영상으로 판단할 수 있는 삼킴단계는 구강준비단계(Oral Preparatory Phase), 구강단계(Oral Phase), 인두단계(Pharyngeal Phase), 식도단계(Esophageal Phase) 4가지로 분류하고 삼킴장애는 침습(Penetration)과 흡인(Aspiration)으로 크게 2가지로 분류한다. 본 논문에서는 이러한 6가지 클래스를 가지는 삼킴장애 환자 비디오 파일을 라벨링하기 위한 웹 애플리케이션을 제안한다. 이를 구현하기 위해서 대용량 멀티프레임 이미지를 수신해서 분리하여 저장하도록 개발하였다. 또한 음식덩이를 정교하게 분할할 수 있도록 GrabCut 알고리즘을 적용하여 라벨링할 수 있도록 하였다. 차후 라벨러와 전문의 간의 협업이 가능하도록 라벨링 데이터의 상태를 관리할 수 있도록 개발하고자 한다.

탐방-라벨기계 생산전문 해동기계

  • 박성권
    • 프린팅코리아
    • /
    • 제7권9호
    • /
    • pp.114-117
    • /
    • 2008
  • 해동기계의 투자는 협력업체들에게도 그대로 이어진다. 핵심 기계 부품을 그대로 양도해 언제 어디에서 생산을 해도 질적인 면에서 전혀 차이가 없는 해동기계의 라벨 인쇄기가 생산된다. 그만큼 치밀하고 꼼꼼하다. 이를 바탕으로 해동기계는 현재 말레이시아.동남아를 넘어 전 세계로 수출 판로를 넓혀 가고 있다. 해동기계가 개발에 성공한 라벨 인쇄기(HD-4530)시리즈는 국내 인쇄 기술력의 결정체라고 해도 과언이 아니다. 설계, 제작, 시공, 판매 등 어느 분야에도 국산 기술력이 배제된 곳이 없기 때문이다. 내수 경기가 불황을 타고 있지만 우수한 외국 기술에 맞서 가격과 품질 면에서 월등한 상승곡선을 타고 있는 해동기계를 들여다봤다.

  • PDF

폴리올레핀계 합성지‘카르레’라벨 적용 (New Application of Polyolefin Synthetic Paper : CARRE)

  • (사)한국포장협회
    • 월간포장계
    • /
    • 통권152호
    • /
    • pp.72-74
    • /
    • 2005
  • 000년 4월에『카르레』를 발매한 후 많은 유저, 가공메이커, 자영업자 등의 협력을 얻어 순조롭게 판매를 늘려왔다. 물론 모든 것이 순조로운 것만이 아닌 유저의 깊은 지지, 협력, 지도를 기반으로 수많은 개선 등으로 현재에 이르게 되었다. 본고에서는 최근 특히 주목되어 온『카르레』의 구조적 특징이 반영되고 있는 사용법의 예를 소개하고 인몰드라벨과 점착라벨에의 활용을 살펴본다.

  • PDF

탐방 - 방성기계 로터리 라벨인쇄기 세계 각국서 인기 (오프셋방식도 곧 출시 예정)

  • 박성권
    • 프린팅코리아
    • /
    • 제8권2호
    • /
    • pp.132-135
    • /
    • 2009
  • 라벨인쇄기 전문 제조업체인 방성기계(대표 장완섭, www.bangsung.co.kr)가 유럽과 동남아시아 등에 주력 제품인 로터리 인쇄기 Art Line300 및 BSR30과 평압라벨인 쇄기에 대해 활발한 수출을 진행하고 있어 업계의 관심을 모으고 있다. 방성기계는 지난 수 년간 세계 전역에서 열리는 해외 전시회에 참가해 오고 있으며, 해외바이어 초청 등 수출 활성화를 위해 지속적이며 공격적인 투자를 진해해 왔다. 이러한 활동을 통해 해외고객으로부터 탄탄한 신뢰를 얻고 있으며, 풍부한 해외 정보를 축적하고 있다.

  • PDF

Naive Bayes 문서 분류기를 위한 점진적 학습 모델 연구 (A Study on Incremental Learning Model for Naive Bayes Text Classifier)

  • 김제욱;김한준;이상구
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
    • /
    • pp.331-341
    • /
    • 2001
  • 본 논문에서는 Naive Bayes 문서 분류기를 위한 새로운 학습모델을 제안한다. 이 모델에서는 라벨이 없는 문서들의 집합으로부터 선택한 적은 수의 학습 문서들을 이용하여 문서 분류기를 재학습한다. 본 논문에서는 이러한 학습 방법을 따를 경우 작은 비용으로도 문서 분류기의 정확도가 크게 향상될 수 있다는 사실을 보인다. 이와 같이, 알고리즘을 통해 라벨이 없는 문서들의 집합으로부터 정보량이 큰 문서를 선택한 후, 전문가가 이 문서에 라벨을 부여하는 방식으로 학습문서를 결정하는 것을 selective sampling이라 한다. 본 논문에서는 이러한 selective sampling 문제를 Naive Bayes 문서 분류기에 적용한다. 제안한 학습 방법에서는 라벨이 없는 문서들의 집합으로부터 재학습 문서를 선택하는 기준 측정치로서 평균절대편차(Mean Absolute Deviation), 엔트로피 측정치를 사용한다. 실험을 통해서 제안한 학습 방법이 기존의 방법인 신뢰도(Confidence measure)를 이용한 학습 방법보다 Naive Bayes 문서 분류기의 성능을 더 많이 향상시킨다는 사실을 보인다.

  • PDF

중요도 맵과 Mean Shift 알고리즘을 이용한 와인 라벨 검출 (Wine Label Detection Using Saliency Map and Mean Shift Algorithm)

  • 진연연;이명은;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.384-385
    • /
    • 2011
  • 본 논문은 중요도 맵과 Mean Shift 알고리즘을 이용하여 모바일 폰 영상 내의 와인 라벨 검출 방법을 제안한다. Mean Shift 알고리즘은 비모수적 클러스터링 기술로 클러스터의 수에 대한 사전 지식이 없이도 클러스터링이 가능한 알고리즘인데 실행 시간이 많이 필요한 단점이 있다. 이러한 문제를 해결하기 위해서 입력 칼라 와인 영상에 Saliency Map을 먼저 적용하고 영상의 두드러진 영역을 찾는다. 다음으로 Mean Shift 알고리즘을 이용한 분할 결과에서 얻은 칼라 마스크를 따라 빈도가 가장 높은 칼라 영역을 찾고 와인 라벨 영역을 검출한다. 실험결과를 통하여 제안된 방법을 모바일 폰을 이용하여 획득된 다양한 와인 영상의 라벨 영역을 효율적으로 검출할 수 있음을 볼 수 있다.

Chain-of-Thought와 Program-aided Language Models을 이용한 전제-가설-라벨 삼중항 자동 생성 (Generating Premise-Hypothesis-Label Triplet Using Chain-of-Thought and Program-aided Language Models)

  • 조희진;이창기;배경만
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.352-357
    • /
    • 2023
  • 자연어 추론은 두 문장(전제, 가설)간의 관계를 이해하고 추론하여 함의, 모순, 중립 세 가지 범주로 분류하며, 전제-가설-라벨(PHL) 데이터셋을 활용하여 자연어 추론 모델을 학습한다. 그러나, 새로운 도메인에 자연어 추론을 적용할 경우 학습 데이터가 존재하지 않거나 이를 구축하는 데 많은 시간과 자원이 필요하다는 문제가 있다. 본 논문에서는 자연어 추론을 위한 학습 데이터인 전제-가설-라벨 삼중항을 자동 생성하기 위해 [1]에서 제안한 문장 변환 규칙 대신에 거대 언어 모델과 Chain-of-Thought(CoT), Program-aided Language Models(PaL) 등의 프롬프팅(Prompting) 방법을 이용하여 전제-가설-라벨 삼중항을 자동으로 생성하는 방법을 제안한다. 실험 결과, CoT와 PaL 프롬프팅 방법으로 자동 생성된 데이터의 품질이 기존 규칙이나 기본 프롬프팅 방법보다 더 우수하였다.

  • PDF