소프트웨어 결함 예측 연구들의 대부분은 라벨 데이터를 훈련 데이터로 사용하는 감독형 모델에 관한 연구들이다. 감독형 모델은 높은 예측 성능을 지니지만 대부분 개발 집단들은 충분한 라벨 데이터를 보유하고 있지 않다. 언라벨 데이터만 훈련에 사용하는 비감독형 모델은 모델 구축이 어렵고 성능이 떨어진다. 훈련 데이터로 라벨 데이터와 언라벨 데이터를 모두 사용하는 세미 감독형 모델은 이들의 문제점을 해결한다. Self-training은 세미 감독형 기법들 중 여러 가정과 제약조건들이 가장 적은 기법이다. 본 논문은 Self-training 알고리즘들을 이용해 여러 모델들을 구현하였으며, Accuracy와 AUC를 이용하여 그들을 평가한 결과 YATSI 모델이 가장 좋은 성능을 보였다.
객체 분할 분야의 딥러닝 기반 컴퓨터 비전 응용들은 성능을 향상하기 위하여 STOA 기법들이 사전학습하여 배포한 하이퍼파라미터와 모델을 통해 학습하는 전이학습 방법을 사용한다. 이 과정에서 사용되는 커스텀 데이터 셋들은 Ground Truth 정보를 생성하기 위한 라벨링 작업에서 시간이나 라벨러등의 많은 자원을 필요로 한다. 본 고에서는 딥러닝 신경망에서 사용되는 커스텀 데이터 셋 구축을 위하여 시간이나 라벨러등의 자원을 적게 사용할 수 있도록 객체 분할 기법을 활용한 자동 라벨링 구축 방법을 제시한다.
삼킴 장애 환자는 뇌졸중, 치매, 외상성 뇌손상, 파킨슨병, 암이 주요 원인으로 급속히 증가하고 있다. 특히 고령화 사회가 되면서 더욱 삼킴 장애 환자는 늘어날 것으로 전망하고 있다. 고령 환자의 삼킴 이상의 진단을 위해 가장 많이 사용하고 있는 검사법으로는 비디오 조영 삼킴 검사(VFSS)이다. VFSS는 진단에 있어서 숙련된 전문의가 필요하기 때문에 대학병원 급에서 주로 시행하며, 고령 환자에게는 분석 결과를 상담받을 때까지 오랜 시간을 소요해야하는 문제점들이 있다. 본 논문에서는 삼킴 장애 진단을 위한 의료영상 관리 및 라벨링 시스템에 대해서 기술한다. 이를 구현하기 위해 서버에서 대용량 멀티프레임 영상을 성능 저하 없이 핸들링 하고 라벨링 데이터 생성을 위한 라벨링 툴을 구현하였다. 차후 라벨링 데이터를 생성하고 학습을 통하여 삼킴 장애 진단을 위한 인공지능 모델을 개발하고자 한다.
삼킴장애는 음식물이 입에서 식도로 가지않고 걸리거나 기도(Trachea)로 흡입되는 문제를 갖는 상태이다. 특히 노인이나 신경계 질환을 앓는 환자의 경우 기도로 흡입된 음식덩이가 폐렴을 일으키고 결국에는 사망으로 이어지기에 적절한 치료와 관리가 요구된다. 보통 영상으로 판단할 수 있는 삼킴단계는 구강준비단계(Oral Preparatory Phase), 구강단계(Oral Phase), 인두단계(Pharyngeal Phase), 식도단계(Esophageal Phase) 4가지로 분류하고 삼킴장애는 침습(Penetration)과 흡인(Aspiration)으로 크게 2가지로 분류한다. 본 논문에서는 이러한 6가지 클래스를 가지는 삼킴장애 환자 비디오 파일을 라벨링하기 위한 웹 애플리케이션을 제안한다. 이를 구현하기 위해서 대용량 멀티프레임 이미지를 수신해서 분리하여 저장하도록 개발하였다. 또한 음식덩이를 정교하게 분할할 수 있도록 GrabCut 알고리즘을 적용하여 라벨링할 수 있도록 하였다. 차후 라벨러와 전문의 간의 협업이 가능하도록 라벨링 데이터의 상태를 관리할 수 있도록 개발하고자 한다.
해동기계의 투자는 협력업체들에게도 그대로 이어진다. 핵심 기계 부품을 그대로 양도해 언제 어디에서 생산을 해도 질적인 면에서 전혀 차이가 없는 해동기계의 라벨 인쇄기가 생산된다. 그만큼 치밀하고 꼼꼼하다. 이를 바탕으로 해동기계는 현재 말레이시아.동남아를 넘어 전 세계로 수출 판로를 넓혀 가고 있다. 해동기계가 개발에 성공한 라벨 인쇄기(HD-4530)시리즈는 국내 인쇄 기술력의 결정체라고 해도 과언이 아니다. 설계, 제작, 시공, 판매 등 어느 분야에도 국산 기술력이 배제된 곳이 없기 때문이다. 내수 경기가 불황을 타고 있지만 우수한 외국 기술에 맞서 가격과 품질 면에서 월등한 상승곡선을 타고 있는 해동기계를 들여다봤다.
000년 4월에『카르레』를 발매한 후 많은 유저, 가공메이커, 자영업자 등의 협력을 얻어 순조롭게 판매를 늘려왔다. 물론 모든 것이 순조로운 것만이 아닌 유저의 깊은 지지, 협력, 지도를 기반으로 수많은 개선 등으로 현재에 이르게 되었다. 본고에서는 최근 특히 주목되어 온『카르레』의 구조적 특징이 반영되고 있는 사용법의 예를 소개하고 인몰드라벨과 점착라벨에의 활용을 살펴본다.
라벨인쇄기 전문 제조업체인 방성기계(대표 장완섭, www.bangsung.co.kr)가 유럽과 동남아시아 등에 주력 제품인 로터리 인쇄기 Art Line300 및 BSR30과 평압라벨인 쇄기에 대해 활발한 수출을 진행하고 있어 업계의 관심을 모으고 있다. 방성기계는 지난 수 년간 세계 전역에서 열리는 해외 전시회에 참가해 오고 있으며, 해외바이어 초청 등 수출 활성화를 위해 지속적이며 공격적인 투자를 진해해 왔다. 이러한 활동을 통해 해외고객으로부터 탄탄한 신뢰를 얻고 있으며, 풍부한 해외 정보를 축적하고 있다.
한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
/
pp.331-341
/
2001
본 논문에서는 Naive Bayes 문서 분류기를 위한 새로운 학습모델을 제안한다. 이 모델에서는 라벨이 없는 문서들의 집합으로부터 선택한 적은 수의 학습 문서들을 이용하여 문서 분류기를 재학습한다. 본 논문에서는 이러한 학습 방법을 따를 경우 작은 비용으로도 문서 분류기의 정확도가 크게 향상될 수 있다는 사실을 보인다. 이와 같이, 알고리즘을 통해 라벨이 없는 문서들의 집합으로부터 정보량이 큰 문서를 선택한 후, 전문가가 이 문서에 라벨을 부여하는 방식으로 학습문서를 결정하는 것을 selective sampling이라 한다. 본 논문에서는 이러한 selective sampling 문제를 Naive Bayes 문서 분류기에 적용한다. 제안한 학습 방법에서는 라벨이 없는 문서들의 집합으로부터 재학습 문서를 선택하는 기준 측정치로서 평균절대편차(Mean Absolute Deviation), 엔트로피 측정치를 사용한다. 실험을 통해서 제안한 학습 방법이 기존의 방법인 신뢰도(Confidence measure)를 이용한 학습 방법보다 Naive Bayes 문서 분류기의 성능을 더 많이 향상시킨다는 사실을 보인다.
본 논문은 중요도 맵과 Mean Shift 알고리즘을 이용하여 모바일 폰 영상 내의 와인 라벨 검출 방법을 제안한다. Mean Shift 알고리즘은 비모수적 클러스터링 기술로 클러스터의 수에 대한 사전 지식이 없이도 클러스터링이 가능한 알고리즘인데 실행 시간이 많이 필요한 단점이 있다. 이러한 문제를 해결하기 위해서 입력 칼라 와인 영상에 Saliency Map을 먼저 적용하고 영상의 두드러진 영역을 찾는다. 다음으로 Mean Shift 알고리즘을 이용한 분할 결과에서 얻은 칼라 마스크를 따라 빈도가 가장 높은 칼라 영역을 찾고 와인 라벨 영역을 검출한다. 실험결과를 통하여 제안된 방법을 모바일 폰을 이용하여 획득된 다양한 와인 영상의 라벨 영역을 효율적으로 검출할 수 있음을 볼 수 있다.
자연어 추론은 두 문장(전제, 가설)간의 관계를 이해하고 추론하여 함의, 모순, 중립 세 가지 범주로 분류하며, 전제-가설-라벨(PHL) 데이터셋을 활용하여 자연어 추론 모델을 학습한다. 그러나, 새로운 도메인에 자연어 추론을 적용할 경우 학습 데이터가 존재하지 않거나 이를 구축하는 데 많은 시간과 자원이 필요하다는 문제가 있다. 본 논문에서는 자연어 추론을 위한 학습 데이터인 전제-가설-라벨 삼중항을 자동 생성하기 위해 [1]에서 제안한 문장 변환 규칙 대신에 거대 언어 모델과 Chain-of-Thought(CoT), Program-aided Language Models(PaL) 등의 프롬프팅(Prompting) 방법을 이용하여 전제-가설-라벨 삼중항을 자동으로 생성하는 방법을 제안한다. 실험 결과, CoT와 PaL 프롬프팅 방법으로 자동 생성된 데이터의 품질이 기존 규칙이나 기본 프롬프팅 방법보다 더 우수하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.