• Title/Summary/Keyword: 라만 감지

Search Result 8, Processing Time 0.023 seconds

Study on the Development of Optical Sensor Linear Fire Detection System Using Raman Scattering (라만산란을 이용한 광센서 선형 화재감지시스템 개발에 관한 연구)

  • Lee, Gun-Ho;Lim, Woo-Sub;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.27-38
    • /
    • 2016
  • The paper reports the development of a distributed temperature sensing (DTS) system, which is a fire detection system using optical sensor linear detectors that depends on foreign and domestic technologies. This study accordingly analyzed the electrical signal patterns of Raman scattering light mainly used for temperature sensing among back-scattered light generated in optical fiber by using an oscilloscope. Through the measurement results, it could be verified that the Stokes signal patterns had little change by the temperature increase, but the temperature-sensitive anti-Stokes patterns had relative increase of the changes. This study developed a K-DTS system, which is an optical sensor linear fire detection system composed of an optical repeater and a receiver that can detect fires using Raman scattering light. It could be verified that the developed K-DTS system satisfied the type approval standards through the sensitivity tests using the rate of rise type and fixed temperature type sensitivity testers. In addition, performance experiments have been performed for performance evaluation of the K-DTS system developed in comparison with S-DTS system which has been imported from abroad and widely used in Korea. It can be confirmed from the results of the performance experiments using model tunnels that comparable performances can be obtained in fire detection locations and the measurements of fire temperatures.

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구)

  • Kwon, Il-Bum;Byeon, Jong-Hyun;Jeon, Min-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.443-450
    • /
    • 2016
  • In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.

순간 자극라만의 원리와 그 응용

  • 진승민;김성근
    • Optical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.26-29
    • /
    • 2004
  • 수많은 자연 현상들은 인간의 감각으로써는 감지할 수 없을 만큼 빠르게 일어나고 있다. 과학자들의 오랜 꿈은 이러한 빠른 현상들을 그들이 일어나고 있는 과정 중에 실시간으로 관찰하는 것이다. 그러기 위해서는 관찰하고자 하는 현상 자체보다 더 빠른 속도의 순간포착 기능을 가진 측정법을 사용하는 것이 일반적인 방법이다. 순간포착법의 역사는 이미 100여 년 전 사진기술의 초기 개발기로 거슬러 올라가는데 실제로 1872년에 Stanford 대학의 설립자인 미국 California의 철도 재벌 Leland Stanford는 빨리 달리는 말의 경우 짧은 순간에라도 네 발이 모두 땅에서 떨어지는 것을 증명하는 일에 $ 25,000의 상금을 내 걸었었다. (중략)

  • PDF

A Basic Study for the Performance Evaluation of a Raman LiDAR Detector for Detecting Hydrogen Gas (수소 가스 검출용 라만 라이다 측정기의 성능 평가를 위한 기초 연구)

  • WONBO CHO;YUNKYU LIM;YANGKYUN KIM;BYOUNGJIK PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.205-211
    • /
    • 2023
  • Hydrogen gas is light and diffuses very quickly. Therefore, when a leakage accident occurs, the damage is great, so a technology that can quickly measure the leakage in the air at a long distance is needed. In order to develop hydrogen gas leaked in the atmosphere in a non-contact manner, an experiment was performed to measure hydrogen gas using a lidar technology using the Raman effect. Hydrogen Raman signals were detected using a UV LED light source, which is a Raman light source, and a spectrometer in the ultraviolet region including an optical filter in the 400-430 nm band. To develop this, a Raman lidar optical structure was designed to measure the hydrogen Raman signal at a certain distance, and the hydrogen Raman spectrum was confirmed using a standard gas to evaluate the performance of this optical structure. The linearity was found to be 0.99 using hydrogen standard gas (10, 50, 100, 500, 1,000 ppm). Accordingly, a Raman lidar capable of measuring hydrogen gas rapidly diffusing in the air in an open state was developed to improve the limitations of existing hydrogen sensors.

A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification (계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘)

  • Kim, Sun-Keum;Ko, Dae-Young;Park, Jun-Kyu;Park, Aa-Ron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.562-569
    • /
    • 2019
  • Raman spectroscopy has been receiving increased attention as a standoff explosive detection technique. In addition, there is a growing need for a fast search method that can identify raman spectrum for measured chemical substances compared to known raman spectra in large database. By far the most simple and widely used method is to calculate and compare the Euclidean distance between the given spectrum and the spectra in a database. But it is non-trivial problem because of the inherent high dimensionality of the data. One of the most serious problems is the high computational complexity of searching for the closet spectra. To overcome this problem, we presented the MPS Sort with Sorted Variance+PDS method for the fast algorithm to search for the closet spectra in the last paper. the proposed algorithm uses two significant features of a vector, mean values and variance, to reject many unlikely spectra and save a great deal of computation time. In this paper, we present two new methods for the fast algorithm to search for the closet spectra. the PCA+PDS algorithm reduces the amount of computation by reducing the dimension of the data through PCA transformation with the same result as the distance calculation using the whole data. the Hierarchical Cluster Tree algorithm makes a binary hierarchical tree using PCA transformed spectra data. then it start searching from the clusters closest to the input spectrum and do not calculate many spectra that can not be candidates, which save a great deal of computation time. As the Experiment results, PCA+PDS shows about 60.06% performance improvement for the MPS Sort with Sorted Variance+PDS. also, Hierarchical Tree shows about 17.74% performance improvement for the PCA+PDS. The results obtained confirm the effectiveness of the proposed algorithm.

Slotted Transmissions using Frame aggregation: A MAC protocol for Capacity Enhancement in Ad-hoc Wireless LANs (프레임 집합화를 이용한 애드-혹 무선 랜의 성능 향상을 위한 MAC 프로토콜)

  • Rahman, Md. Mustafizur;Hong, Choong-Seon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.33-41
    • /
    • 2007
  • The IEEE 802.11 DCF channel access function allows single transmission inside two-hop network in order to avoid collisions and eliminate the hidden and exposed terminal problems. Singular transmission capability causes data frames waiting for the entire roundtrip time in the transmitter neighborhood, and results in increased frame latency and lower network throughput. Real-time and pervasive applications are severely affected for the lower medium utilization; especially with high network traffic. This work proposes a new scheme with the help of Frame Aggregation technique in IEEE802.11n and overcomes the single transmission barrier maintaining the basic DCF functionality. Proposed scheme allows parallel transmissions in non-interfering synchronized slots. Parallel transmissions bypass the conventional physical carrier sense and random Backoff time for several cases and reduce the frame latency and increase the medium utilization and network capacity.

A Study of Gamma-ray Irradiation Effects on Commercially Available Single-mode Optical Fiber (국내외 상용 단일모드 광섬유의 감마선 영향 분석 연구)

  • Kim, Jong-Yeol;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.564-567
    • /
    • 2012
  • Optical fibers are going to be used for telecommunication, image fibers, sensors under irradiation in nuclear power plants and various irradiation facilities. Especially, Temperature detection sensors using Raman light scattering, temperature or strain sensors using fiber gratings, magnet-optical sensors using photo-magnetic effect, are already commercialized. However, When fibers are exposed to ionizing radiation, color centers are formed in fibers which reduces their light transmission, and it is limited in applying under radiation environments. In this study, $Co^{60}$ gamma-ray induced optical attenuation on Ge-doped single mode(SM) fiber has been measured. Gamma-ray is irradiated for 4hours at the dose rate of 0.5kGy/hr, 2kGy/hr, 8kGy/hr. Consequently, gamma-ray induced loss based on radiation effects in Ge-doped SM fiber occur precisely. Furthermore, dose rate effect that the higher dose rate in the same total dose, the more increase loss of optical fiber and annealing effect that the higher the loss after irradiation, the more increase the recovery rate of the loss are observed in the fiber. This results plan to make use of bases in the study of the radiation-hardened optical fiber.

  • PDF

Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules (폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가)

  • Chan Hwi Kim;Suyeon Cho;Hyeongtae Kim;Won Joo Lee;Jun Hong Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.255-260
    • /
    • 2023
  • As demanding the detection of explosive molecules, it is required to develop rapidly and precisely responsive sensors with ultra-high sensitivity. Since two-dimensional semiconductors have an atomically thin body nature where mobile carriers accumulate, the abrupt modulation carrier in the thin body channel can be expected. To investigate the effectiveness of WSe2 semiconductor materials as a detection material for TNT (Trinitrotoluene) explosives, WSe2 was synthesized using thermal chemical vapor deposition, and afterward, WSe2 FETs (Field Effect Transistors) were fabricated using standard photo-lithograph processes. Raman Spectrum and FT-IR (Fourier-transform infrared) spectroscopy reveal that the adsorption of TNT molecules induces the structural transition of WSe2 crystalline. The electrical properties before and after adsorption of TNT molecules on the WSe2 surface were compared; as -50 V was applied as the back gate bias, 0.02 μA was recorded in the bare state, and the drain current increased to 0.41 μA with a dropping 0.6% (w/v) TNT while maintaining the p-type behavior. Afterward, the electrical characteristics were additionally evaluated by comparing the carrier mobility, hysteresis, and on/off ratio. Consequently, the present report provides the milestone for developing ultra-sensitive sensors with rapid response and high precision.