• Title/Summary/Keyword: 라디칼반응

Search Result 514, Processing Time 0.036 seconds

Homolytic Reactions of Isonitriles (이소니트릴의 자유라디칼반응)

  • Sung Soo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.250-258
    • /
    • 1980
  • Various radicals may add to isonitriles to give imidoyl radcals RN=CR'. This may be also generated via abstraction of imidoyl hydrogen from imine in the following manner: RN=CR' + R"${\cdot}{\rightarrow}$ RN=CR' + R"-H Imidoyl radicals would be stabilized via two pathways, ${\beta}$-cleavage and atom transfer reactions. ${\beta}$-Cleavage may occur in two directions depending upon structure of the radicals. Cyanide transfer and the "so-called" normal ${\beta}$-cleavage are the two modes of ${\beta}$-cleavage. Addition of t-butoxy radical to t-butyl isocyanide 7 generates an imidoyl radical t-Bu-N=C-O-Bu-t, which undergoes ${\beta}$-cleavage to give t-butyl isocyanate and t-butyl radical. Addition of phenyl radical to 7 forms the intermediate radical t-Bu-N=$C-C_6H_5$, which decomposes to give benzonitrile and t-butyl radical. The t-butyl radical generated from the ${\beta}$-cleavage adds to 7 giving the radical t-Bu-N=C-Bu-t, which cleaves only to pivalonitrile and t-butyl radical, inducing radical chain isomerization. Trimethylsilyl radical adds to 7 to give the intermediate t-Bu-N=$C-Si(CH_3)_3$, which collapses to $(CH_3)_3$SiCN and a t-butyl radical.

  • PDF

Photosensitized Generation of ydroxyl Radical by Color Additive (색소 첨가제에 의한 히드록시 라디칼의 광증감 생성반응)

  • 김민식;성대동
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.6-13
    • /
    • 1997
  • Reactivity and reaction mechanism for the photosensitized generation of hydroxyl radical by various coumarin derivatives are investigated by means of ESR and laser flash photolysis methods. The nine kinds of coumarin derivatives show to be proceeded through the OH·radical generation mechanism, however 1-ethyl-3-nitro-1-nitrosoguanidine decomposes and produces the carbene intermediate before OH·radical generation reaction occurs. The nine coumarin derivatives show the signals, which are corresponded to DMPO-OH spin adducts. NaN3, EtOH and HCOONa act as a strong photosensitizer to quench OH·radical. The decay rate constants of the hydrated electrons in the case of added N2O show higher than added K3Fe(CN)6.

  • PDF

Visualization of luminescent radicals in the flame by image processing (영상처리에 의한 화염 발광 라디칼의 가시화)

  • 김경찬;김영민;정주영;김태권
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.264-269
    • /
    • 1998
  • The Measurement of concentration patterns for $C_2$, CH and OH radicals in the premixed propane-air flame could be managed through an image processing technique. This technique was applied to the three kinds of flames on a bunsen burner-mixtures of fuel to be lean, optimum and excessive respectively. The image processing system was complished by treating single wavelength flame images around the eac radical luminescence band, which was obtained by using a set of narrow band pass filters, an image intensifier, CCD and PC. It was possible to observe and predict the reaction zone and the concentration distribution of the radicals, Spatial distribution of each radicals in the raaction zone gave us enough informations to analyze the reaction mechanisms in $C_mH_n$ combustion process. According to this informations, the image of $C_2$ radical exists at front zone, following the images of CH and OH radicals at downstream.

  • PDF

Measurement of Atmospheric Nitrous Acid(HONO) using DNPH/HPLC in Seoul (DNPH/HPLC에 의한 서울시 대기 중의 Nitrous Acid 측정)

  • 정용국;홍상범;이재훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.325-326
    • /
    • 2001
  • 오존은 태양광선의 존재 하에 질소산화물과 VOCs가 관련하여 발생하는 생성물이다. 대기중의 VOCs 는 히드록실 라디칼(hydroxyl radical, OHㆍ)과 같은 자유 라디칼(free radical)과 반응하여 하이드로퍼옥시 라디칼(hydroperoxy radical, HO$_2$ㆍ)과 알킬 퍼옥시 라디칼(alkyl peroxy radical, RO$_2$ㆍ)을 생성해 낸다. 이 퍼옥시 라디칼들은 NO를 NO$_2$ㆍ로 산화시키며 또한 히드록실 라디칼을 재생하며 이 히드록실 라디칼은 다시 VOCs와 반응한다. 그리고, 이때 산화된 NO$_2$는 햇빛에 의해 NO와 자유산소원자(free oxygen atom)로 광분해 되는데, 여기서 생성된 자유산소인자는 산소분자와 반응하여 오존을 생성한다. (중략)

  • PDF

MO Studies on the Reaction of t-Butoxyl, t-Butyl Radical with Substituted-Toluenes (t-Butoxyl, t-Butyl 라디칼에 의한 치환체-톨루엔의 수소 추출반응에 대한 분자궤도론적 연구)

  • Young Gu Cheun;Mi Sook Hwang;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.391-398
    • /
    • 1983
  • The reaction for the hydrogen abstraction from substituted-toluenes by t-butoxyl and t-butyl radical have been studied MO theoretically using CNDO/2 method. The reaction for the abstraction from substituted-toluenes by t-butoxyl radical showed the negative ${\rho}$ values from Hammett equation, since t-butoxyl radial is electrophilic, relatively low energy SOMO, which can interact with HOMO energy of substituted-toluens. On the other hand, t-butyl radical is nucleophilic, relatively high energy SOMO, which can interact with LUMO energy of substituted-toluenes. And so the reaction of abstraction from substituted-toluenes by t-butyl radical exhibited positive ${\rho}$ values.

  • PDF

Effect of Substituent of Chain Transfer agent in the Free Radical Polymerization (자유 라디칼 중합반응에서 사슬이동제의 치환기 효과)

  • Chung, I.
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.53-58
    • /
    • 2005
  • Carbon tetrachloride is very reactive chain transfer agent due to the resonance stability of the trichlorocarbon radicals after breaking of C-Cl bond. Effect of benzylic radical comparing to trichlorocarbon radicals in the chain tranrfer reactions was investigated. From the structural point of view, cumyl chloride is a good candidate because it has the C-Cl bond with benzylic radicals after displacement of C-Ci bond. The reactivity of free radical polymerization of styrene in the presence of cumyl chloride was compared with that of carbon tetrachloride by calculating chain transfer constants. Results show that the cumyl chloride acts as a stronger chain transfer agent than carbon tetrachloride. The calculated chain transfer constant of cumyl chloride shows higher value (0.0463) than that of carbon tetrachloride (0.0011) in the styrene polymerization. High reactivity of cumyl chloride comparing to that of carbon tetrachloride is probably due to the higher resonance stability or benzylic radical than that or trichlorocarbon radicals after breaking of C-Cl bond. Monte Carlo simulation method is applied for characterizing the validity of kinetic constants according to the ratio of chain transfer agent to monomer.

환경호르몬물질의 오존반응성에 관한 연구(I) 페놀류 환경호르몬물질의 오존반응성

  • 이종팔;성락창;이성식;박현석;류병순
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.130-131
    • /
    • 2001
  • 페놀류화합물의 경우 오존단독반응에서 보다 오존/과산화수소반응이 더 속도가 느림을 알 수 있었는데 이는 Hoigne 등이 이미 제시한 .OH라디칼반응보다 오히려 ortho위치의 오존삽입반응메카니즘으로 진행됨을 알 수 있으며, 반대로 benzophenone의 경우는 .OH라디칼에 의한 산화반응이 더 잘 진행됨을 볼 수 있었다.

  • PDF

Degradation of Humic Acids by Ozone/high pH, Ozone/Hydrogen Peroxide and Ozone/Hydrogen Carbonate System ($O_3$/high pH, $O_3/H_2O_2$$O_3/{HCO_3}^-$ 시스템에서의 부식산의 분해 반응 특성)

  • Shin, Hyun Sang;Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.652-658
    • /
    • 2000
  • Chemical degradation of aqueous humic acid by ozonation was studied with respect to the direct reactions of ozone and the indirect reactions due to its preliminary decomposition to secondary oxidant, OH radical. This was characterized by analyzing TOC, $UV_{254}$ and ozone consumption measured in different experimental conditions in which ozone reacted in the presence of various concentrations of $H_2O_2$ and $HCO_3{^-}$ concentrations ranging from 20 to 100 mg/L. and different pH (5-9). The results suggest that the TOC removal is mainly dependent on indirect reactions of OH radical whereas $UV_{254}$ reduction is mainly dependent on direct reactions of ozone with humic acid molecules. It has been also found that ozone consumption was most likely to be affected by pH and alkalinity in the solution.

  • PDF

Measurement of Tropospheric HOx(OH, $HO_2$) Radicals using Laser-Induced Fluorescence Technique (대류권 HOx(OH, $HO_2$) 라디칼 농도 측정 기기 개발 -레이저 유도 형광법 (Laser-Induced Fluorescence Technique))

  • 민경은;도태용;이호재;최종호;이미혜
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.51-52
    • /
    • 2003
  • 대기 중에서 HOx(OH, H $O_2$) 라디칼은 매우 중요한 산화제로, 대류권내 광화학 반응에 있어 그 역할이 핵심적이라 할 수 있다. 이러한 OH 라디칼의 정확한 농도를 측정하는 것은 대기의 산화능, 기후 변화 및 대기 중의 광화학 반응을 보다 정확히 이해하기 위해 매우 필요한 연구이다. 그러나 OH를 비롯한 HOx 라디컬의 농도 측정은 이들이 라디칼이기 때문에 매우 어려운 것이 사실이다. 즉, 이들은 대기 내에 존재하는 양이 절대적으로 적고 (OH: $10^{6}$molecules cm-$^3$, H $O_2$: $10^{8}$molecules cm-$^3$), 반응성이 커서 수명이 짧기 때문에 측정에 많은 어려움이 따른다. (중략)

  • PDF

Evaluation of Radical Scavenging and α-Glucosidase Inhibitory Effects of Gallic Acid Reactants Using Polyphenol Oxidase (폴리페놀산화효소를 활용한 Gallic Acid 반응물의 라디칼 소거 및 α-Glucosidase 저해 활성 평가)

  • Jeong, Yun Hee;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1385-1390
    • /
    • 2016
  • Gallic acid is a representative hydroxybenzoic acid and is found in free form in several plants and in various esterified forms as a part of hydolyzable tannins. Convenient enzymatic transformation of trihydroxylated gallic acid with polyphenol oxidase originating from pear was evaluated to investigate whether polyphenol oxidase can be used as a valuable compound to improve the biological activity of gallic acid. Enzymatic oxidation processing of gallic acid using polyphenol oxidase was carried out for five different reaction times. The antioxidant effects of transformed gallic acid for different reaction times were evaluated via radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals. In addition, the anti-diabetic property of the transformed gallic acid was measured based on ${\alpha}$-glucosidase. Gallic acid reacted for 5 h showed significantly higher antioxidant and ${\alpha}$-glucosidase inhibitory activities compared to the tested positive control substances. Biotransformation of simple gallic acid induced by polyphenol oxidase might be responsible for enhancing the biological activity of gallic acid.