• 제목/요약/키워드: 라그랑주 승수법

검색결과 5건 처리시간 0.019초

라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례 (A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation)

  • 이상구;남윤;이재화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권1호
    • /
    • pp.65-84
    • /
    • 2023
  • 라그랑주 승수법(Method of Lagrange Multipliers)은 등식 제약조건하에서 미분가능한 함수의 최대, 최소를 구하는 대표적인 방법이다. 선형대수학, 최적화 이론, 제어 이론을 포함하여 최근에는 인공지능 기초수학에서도 널리 활용되고 있다. 특히 라그랑주 승수법은 미분적분학과 선형대수학을 연결하는 중요한 도구이며, 주성분 분석(Principal Component Analysis, PCA)을 포함한 인공지능 알고리즘에 많이 활용되고 있다. 따라서 교수자는 대학 미분적분학에서 처음 라그랑주 승수법을 접하는 학생들에게 구체적인 학습 동기를 제공할 필요가 생겼다. 이에 본 논문에서는 교수자가 학생들에게 라그랑주 승수법을 효과적으로 교육하는데 필요한 통합적인 시야를 제공한다. 먼저 다양한 전공의 학생들이 계산에 대한 부담을 덜고 원리를 쉽게 이해할 수 있도록 개발한 시각화 자료 및 파이썬(Python) 기반의 SageMath 코드를 제공한다. 또한 라그랑주 승수법으로 행렬의 고윳값과 고유벡터를 유도하는 과정을 상세히 소개한다. 그리고 라그랑주 승수법을 간단한 경우에 대한 증명에서 시작하여 일반화된 최적화 문제로 확장하고, 수업에서 학생들이 라그랑주 승수와 PCA를 활용하여 실제 데이터를 분석한 결과를 추가하였다. 본 연구는 대학수학을 지도하는 다양한 전공의 교수자들에게 도움이 될 기초자료가 될 것이다.

분할법 구조를 갖는 반응표면 실험에서 최대경사법 수행 방법 (Carrying Out the Method of Steepest Ascent in a Response Surface Experiment with Split-Plot Structure)

  • 이종성
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.27-31
    • /
    • 2011
  • In many industrial experiments, some practical constraints often force factors in an experiment to be much harder to change than others. Such an experiment involves randomization restrictions and it can be thought of as split-plot experiment. This paper investigates the path of steepest ascent/descent within a split-plot structure. A method is proposed for calculating the coordinates along the path.

  • PDF

최소노름 응력장를 이용한 구조물의 소성해석법 (Plastic Design Method for Steel Skeletal Structure based on the Least Norm Stress Field)

  • 이승재
    • 한국공간구조학회논문집
    • /
    • 제6권3호
    • /
    • pp.131-137
    • /
    • 2006
  • 본 연구는 소성이론의 하계정리를 이용하여 구조설계자의 부재의 응력장에 대한 만족도를 고려한 구조해석 프로그램을 제안한다. 구조물에 작용하는 계수하중과 평형을 이루는 임의의 응력장 중에서 최소노름 응력장을 이용하여 찾아내고, 구조물의 모든 부위에서 부재의 설계내력이 부재력을 상회하도록 부재 단면을 결정하는 방법을 제안한다.

  • PDF

1차원 유한요소망 연속기법을 이용한 시간영역 탄성파의 역해석 (Time-domain Elastic Full-waveform Inversion Using One-dimensional Mesh Continuation Scheme)

  • 강준원
    • 한국전산구조공학회논문집
    • /
    • 제26권4호
    • /
    • pp.213-221
    • /
    • 2013
  • 이 논문에서는 반무한 고체영역의 표면에서 측정한 변위응답의 시간이력으로부터 유한요소망 연속기법을 이용해 탄성파 속도의 공간적 분포를 추정하는 역해석 문제를 소개한다. 반무한 영역에서의 역해석을 위해서는 해석 대상이 되는 유한영역의 경계에서 파동의 반사가 일어나지 않도록 하는 것이 중요하다. 이를 위해 유한영역의 경계면에 perfectly-matchedlayers(PMLs)라는 수치적 파동흡수층을 도입하였고, PML을 경계로 하는 유한영역에서 역해석 문제를 정의하였다. 이 문제를 탄성파동방정식을 구속조건으로 하는 최적화 문제로 표현하였으며, 라그랑주 승수법에 기초한 비구속 최적화 기법에 의해 탄성파속도의 최적 분포를 결정하였다. 해의 정확도와 수렴성을 높이기 위해 유한요소망 연속기법을 도입하여 점진적으로 밀도가 증가하는 유한요소망에 대해 연속적으로 역해석을 수행하였다. 1차원 예제들을 통해 유한요소망 연속기법을 이용한 역해석으로부터 탄성파속도의 분포를 정확히 추정할 수 있음을 확인하였으며, 측정 응답에 노이즈가 존재하는 경우에도 제안한 역해석 기법은 목표 탄성파속도 분포에 근사한 결과를 도출하였다.

콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법 (Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures)

  • 정봉구;김보영;강준원;황진하
    • 한국전산구조공학회논문집
    • /
    • 제32권4호
    • /
    • pp.249-256
    • /
    • 2019
  • 이 논문은 재료의 전기 전도도 분포를 재구성하는 전기임피던스 단층이미지 기법(electrical impedance tomography; EIT)을 제시한다. 이 문제는 구조물 표면의 전극에서 측정된 전위와 계산된 전위의 차를 최소화하여 전기 전도도의 공간적 분포를 재구성하는 최적화 문제로 정의된다. 전류 입력 시 전위를 구하는 정해석 문제의 수학적 모델로서 완전전극모델(complete electrode model; CEM)을 사용하였다. 완전전극모델은 전기 포텐셜에 대한 라플라스 방정식과 전류 입력에 따른 경계조건들로 구성되는 경계값 문제이다. 완전전극모델 해의 정확성을 검증하기 위하여 유한요소법을 이용해 구한 원형 구조물의 전위해와 Technology Computer Aided Design(TCAD) 소프트웨어를 사용해 얻은 결과를 비교하였다. 완전전극모델의 지배방정식과 경계조건을 구속조건으로 하는 최적화 문제를 라그랑주 승수법(lagrange multiplier method)을 이용해 비구속 최적화 문제로 전환하고 라그랑지안의 1차 최적화 조건으로부터 전극에서의 전위 차를 최소화하는 최적의 전기전도도 분포를 도출하였다. 원형 균일영역의 전기 전도도 분포를 재구성하는 역해석 예제를 통해 완전전극모델 기반 EIT 프레임워크의 적용성을 검토하였다.