• Title/Summary/Keyword: 라그란지 승수

Search Result 4, Processing Time 0.017 seconds

Eigenvalue Analysis of the Building with Viscoelastic Dampers Using Component Mode Method (부분모드 방법을 이용한 점탄성 감쇠기가 설치된 건물의 고유치 해석)

  • 민경원;김진구;조한욱;이성경
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • The eigenvalue problem is presented for the building with added viscoelastic dampers by using component mode method. The Lagrange multiplier formulation is used to derive the eigenvalue problem which is expressed with the natural frequencies of the building, the mode components at which the dampers are added, and the viscoelastic property of the damper. The derived eigenvalue problem has a nonstandard form for determining the eigenvalues. Therefore, the problem is examined by the graphical depiction to give new insight into the eigenvalues for the building with added viscoelastic dampers. Using the present approach the exact eigenvalues can be found and also upper and lower bounds of the eigenvalues can be obtained.

  • PDF

A Study on Optimal Electric Load distribution of Generators on board using a Dynamic Programming (동적계획법을 이용한 선내 발전시스템의 최적부하분담 방법에 관한 연구)

  • 유희한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.106-112
    • /
    • 2000
  • Since the oil crisis, we have been concerned about the energy saving techniques of electric generating systems. As a part of the effort to save energy, automatic electric load sharing device was developed. Usually, ship's electric generating system consists of two or three sets of generator. And, electric generating system is operated as single or parallel operation mode according to the demanded electric power. Therefore, it is important to investigate generators operating mode for the supply of required electric power in the ship in order to decrease the operating cost. So, this paper suggests the method to solve the optimal electric load distribution problem by dynamic programming. And, this thesis indicates that the proposed method is superior to the lagrange multiplier's method in obtaining optimal load distribution solution in the ship's electric generating system.

  • PDF

An Efficient Solution Algorithm of Quadratic Programming Problems for the Structural Optimization (구조최적설계를 위한 2차계획문제의 효율적인 해법)

  • Seo, Kyung Min;Ryu, Yeon Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.59-70
    • /
    • 1992
  • Quadratic programming problems(QP) have been widely used as a direction-finding subproblem in the engineering and structural design optimization. To develop an efficient solution algorithm for the QP subproblems, theoretical aspects and numerical behavior of mathematical programming methods that can be used as QP solver are studied and compared. For the solution of both primal and dual QP, Simplex, gradient projection(GRP), and augmented Lagrange multiplier algorithms are investigated and coded. From the numerical study, it is found that the primal GRP algorithm with potential constraint strategy and the dual Simplex algorithm are more attractive and effective than the others. They have theoretical robustness as well. Moreover, primal GRP algorithm is preferable in case the number of constraints is larger than the number of design variables. Favorable features of GRP and Simplex algorithm are merged into a combined algorithm, which is useful in the structural design optimization.

  • PDF

Computations of Wave Energy by Stream Function Wave Theory (흐름함수파이론에 의한 파랑 에너지의 계산)

  • Lee, Jung Lyul;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.67-75
    • /
    • 1986
  • This paper introduces the nonlinear Stream Function Wave Theory for design waves efficiently to compute the wave energy and energy transport quantities and to analyze the effects of nonlinearities on them. The Stream Function Wave Theory was developed by Dean for case of the observed waves with assymmetric wave profiles and of the design waves with symmetric theoretical wave profiles. Dalrymple later improved the computational procedure by adding two Lagrangian constraints so that more efficient convergence of the iterative numerical method to a specified wave height and to a zero mean free surface displacement resulted. And the Stream Function coefficients are computed numerically by the improved Marquardt algorithm developed for this study. As the result of this study the effects of nonlinearities on the wave quantities of the average potential energy density, the average kinetic energy density result in overestimation by linear wave theory compared to the Stream Function Wave Theory and increase monotonically with decreasing $L^*/L_O$ and with increasing $H/H_B$. The effects of nonlinearities on the group velocity and the wavelength quantities result in underestimation by linear wave theory and increase monotonically with increasing $H/H_B$. Finally the effect of nonlinearity on the average total energy flux results in overestimation for shallow water waves and underestimation for deep water waves by linear wave theory.

  • PDF