Annual Conference on Human and Language Technology
/
2018.10a
/
pp.600-604
/
2018
한국어 문장 분류는 주어진 문장의 내용에 따라 사전에 정의된 유한한 범주로 할당하는 과업이다. 그런데 분류 대상 문장이 띄어쓰기 오류를 포함하고 있을 경우 이는 분류 모델의 성능을 악화시킬 수 있다. 이에 한국어 텍스트 혹은 음성 발화 기반의 문장을 대상으로 분류 작업을 수행할 경우 띄어쓰기 오류로 인해 발생할 수 있는 분류 모델의 성능 저하 문제를 해결해 보고자 문장 압축 기반 학습 방식을 사용하였다. 학습된 모델의 성능을 한국어 영화 리뷰 데이터셋을 대상으로 실험한 결과 본 논문이 제안하는 문장 압축 기반 학습 방식이 baseline 모델에 비해 띄어쓰기 오류에 강건한 분류 성능을 보이는 것을 확인하였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.528-531
/
2021
띄어쓰기에 대한 오류는 한국어 처리 전반에 영향을 주므로 자동 띄어쓰기는 필수적인 요소이다. 글쓴이의 대부분은 띄어쓰기 오류를 범하지 않으므로 글쓴이의 의도가 띄어쓰기 시스템에 반영되어야 한다. 그러나 대부분의 자동 띄어쓰기 시스템은 모든 띄어쓰기 정보를 제거하고 새로이 공백문자를 추가하는 방법으로 띄어쓰기를 수행한다. 이런 문제를 완화하기 위해서 본 논문에서는 기계학습에서 글쓴이의 의도가 반영된 자질을 추가하는 방법을 제안한다. 실험을 위해서 CRFs(Conditional Random Fields)를 사용하여 기존 시스템과 사용자의 의도를 반영한 띄어쓰기 시스템과의 성능을 비교하고 분석한다.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.25-27
/
2006
음성인식 결과는 띄어쓰기 오류가 포함되어 있으며 이는 인식 결과에 대한 이후의 정보처리를 어렵게 하는 요인이 된다. 본 논문은 음성 인식 결과의 띄어쓰기 오류를 수정하기 위하여 품사 정보를 이용한 어절 재결합 기법을 기본 알고리즘으로 사용하고 추가로 음절 바이그램 및 4-gram 정보를 이용하는 띄어쓰기 오류 교정 방법을 제안하였다. 또한, 음성인식기의 출력으로 품사 정보가 부착된 경우와 미부착된 경우에 대한 비교 실험을 하였다. 품사 미부착된 경우에는 사전을 이용하여 품사 정보를 복원하였으며 N-gram 통계 정보를 적용했을 때 기본적인 어절 재결합 알고리즘만을 사용 경우보다 띄어쓰기 정확도가 향상되는 것을 확인하였다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.06a
/
pp.95-100
/
2000
문자 인식기를 가지고 스캔된 원문 이미지를 인식한 결과로 형태소 분석과 어절 분석을 통해 대용량의 문서 정보를 데이터베이스에 구축하고 전문 검색(full text retrieval)이 가능하도록 한다. 그러나, 입력문자가 오인식된 경우나 띄어쓰기가 잘못된 데이터는 형태소 분석이나 어절 분석에 그대로 사용할 수가 없다. 한글 문자 인식의 경우 문자 단위의 인식률은 약 90.5% 정도나 문자 인식 오류와 띄어쓰기 오류 등을 고려한 어절 단위의 인식률은 현저하게 떨어진다. 이를 위해 한극어의 음절 특성을 고려해서 사전을 기반하지 않고 학습이 잘된 말뭉치(corpus)와 음절 단위의 bi-gram 정보를 이용한 자동 띄어쓰기를 하여 실험한 결과 학습 코퍼스의 크기와 띄어쓰기 오류 위치 정보에 따라 다르지만 약 86.2%의 띄어쓰기 정확도를 보였다. 이 결과를 가지고 형태소 분서고가 언어 평가 등을 이용한 문자 인식 후처리 과정을 거치면 문자 인식 시스템의 인식률 향상에 크게 영향을 미칠 것이다.
Annual Conference on Human and Language Technology
/
2000.10d
/
pp.95-100
/
2000
문자 인식기를 가지고 스캔된 원문 이미지를 인식한 결과로 형태소 분석과 어절 분석을 통해 대용량의 문서 정보를 데이터베이스에 구축하고 전문 검색(full text retrieval)이 가능하도록 한다. 그러나, 입력문자가 오인식된 경우나 띄어쓰기가 잘못된 데이터는 형태소 분석이나 어절 분석에 그대로 사용할 수가 없다. 한글 문자 인식의 경우 문자 단위의 인식률은 약 90.5% 정도나 문자 인식 오류와 띄어쓰기 오류 등을 고려한 어절 단위의 인식률은 현저하게 떨어진다. 이를 위해 한국어의 음절 특성을 고려해서 사전을 기반하지 않고 학습이 잘된 말뭉치(corpus)와 음절 단위의 bigram 정보를 이용한 자동 띄어쓰기를 하여 실험한 결과 학습 코퍼스의 크기와 띄어쓰기 오류 위치 정보에 따라 다르지만 약 86.2%의 띄어쓰기 정확도를 보였다. 이 결과를 가지고 형태소 분석과 언어 평가 등을 이용한 문자 인식 후처리 과정을 거치면 문자 인식 시스템의 인식률 향상에 크게 영향을 미칠 것이다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2006.06a
/
pp.67-71
/
2006
현재까지 제안된 자동 띄어쓰기 교정 모델들은 그 중의 대다수가 입력 문장에서 공백을 제거한 후에 교정 작업을 수행한다. 이러한 교정 방식은 입력 문장의 띄어쓰기가 잘 되어 있는 경우에 입력 문장보다 좋지 못한 교정 문장을 생성하는 경우가 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 입력 문장의 띄어쓰기를 고려한 자동 띄어쓰기 교정모델을 제안한다. 이 모델은 입력 문장의 음절단위 띄어쓰기 오류가 5%일 때 약 8%의 성능 향상을 보였으며, 10%의 오류가 존재할 때 약 5%의 성능 향상을 보였다.
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.251-254
/
2009
띄어쓰기는 한글 맞춤법에 명시되어 있는 규정에 따르면 되지만, 근본적으로 명확한 정의가 내려있지 않으며 복잡하고 애매모호한 기준들이 얽혀 사용자들이 혼란을 겪는 등 많은 오류를 일으키고 있다. 이에 맞춤법 오류에 대한 원인을 찾아 체계적인 교육이 이루어지거나, 맞춤법을 수정 및 보완할 필요성이 있다 하겠다. 본 연구는 사용자들의 편의성을 우선시하여 맞춤법에 있어 논리적 근거를 마련하고 한국어 정보처리의 양상을 살펴보는 것에 의의가 있다. 이에 비교적 띄어쓰기 기준이 명확한 관형어절에 초점을 두어 띄어쓰기가 읽기에 어떤 영향을 미치는지 알아보고자 실시하였다. '관형사 + 명사' 구조와 '~적 + 명사' 구조의 관형어절이 포함된 104개의 문장을 가지고 2개의 목록을 만들었다. 목록 간에는 띄어쓰기 여부가 반대이며 피험자는 목록 중 하나를 경험하였다. 하나의 문장을 끊어서 제시하여 피험자는 읽는 데로 space bar key를 누르는 자기 읽기 조절 과제를 시행하였고, 이어서 문장에 대한 질문을 통해 이해도 검사를 실시하였다. 관형어절을 읽는 평균 속도를 분석한 결과 미세한 차이가 있었으나, 유의미하지는 않았다. 이는 관형어절에 있어서 띄어쓰기의 영향이 크지 않음을 의미한다고 볼 수 있겠다.
In this paper, we present a preprocessor which corrects word spacing errors and spelling correction errors simultaneously. The proposed expands noisy-channel model so that it corrects both errors in colloquial style sentences effectively, while preprocessing algorithms have limitations because they correct each error separately. Using Eojeol transition pattern dictionary and statistical data such as n-gram and Jaso transition probabilities, it minimizes the usage of dictionaries and produces the corrected candidates effectively. In experiments we did not get satisfactory results at current stage, we noticed that the proposed methodology has the utility by analyzing the errors. So we expect that the preprocessor will function as an effective error corrector for general colloquial style sentence by doing more improvements.
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.25-31
/
2006
본 논문에서는 띄어쓰기 오류와 철자 오류를 동시에 교정 가능한 전처리기를 제안한다. 제시된 알고리즘은 기존의 전처리기 알고리즘이 각 오류를 따로 해결하는 데에서 오는 한계를 극복하고, 기존의 noisy-channel model을 확장하여 대화체의 띄어쓰기 오류와 철자오류를 동시에 효과적으로 교정할 수 있다. N-gram과 자소변환확률 등의 통계적 방법과 어절변환패턴 사전을 이용하여 최대한 사전을 적게 이용하면서도 효과적으로 교정 후보들을 생성할 수 있다. 실험을 통해 현재 단계에서는 만족할 만한 성능을 얻지는 못하였지만 오류 분석을 통하여 이와 같은 방법론이 실제로 효용성이 있음을 알 수 있었고 앞으로 더 많은 개선을 통해 일상적인 대화체 문장에 대해서 효과적인 전처리기로서 기능할 수 있을 것으로 기대 된다.
Kim, GiHwan;Seo, Jisu;Lee, Kyungyeol;Ko, Youngjoong
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.185-188
/
2018
띄어쓰기와 문장 경계 인식은 그 성능에 따라 자연어 분석 단계에서 오류를 크게 전파하기 때문에 굉장히 중요한 문제로 인식되고 있지만 각각 서로 다른 자질을 사용하는 문제 때문에 각각 다른 모델을 사용해 순차적으로 해결하였다. 그러나 띄어쓰기와 문장 경계 인식은 완전히 다른 문제라고는 볼 수 없으며 두 모델의 순차적 수행은 앞선 모델의 오류가 다음 모델에 전파될 뿐만 아니라 시간 복잡도가 높아진다는 문제점이 있다. 본 논문에서는 띄어쓰기와 문장 경계 인식을 하나의 문제로 보고 한 번에 처리하는 다중 클래스 분류 시스템을 통해 시간 복잡도 문제를 해결하고 다중 손실 선형 결합을 사용하여 띄어쓰기와 문장 경계 인식이 서로 다른 자질을 사용하는 문제를 해결했다. 최종 모델은 띄어쓰기와 문장 경계 인식 기본 모델보다 각각 3.98%p, 0.34%p 증가한 성능을 보였다. 시간 복잡도 면에서도 단일 모델의 순차적 수행 시간보다 38.7% 감소한 수행 시간을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.