• Title/Summary/Keyword: 딥 오토인코더

Search Result 60, Processing Time 0.024 seconds

Anomaly Detection of Generative Adversarial Networks considering Quality and Distortion of Images (이미지의 질과 왜곡을 고려한 적대적 생성 신경망과 이를 이용한 비정상 검출)

  • Seo, Tae-Moon;Kang, Min-Guk;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.171-179
    • /
    • 2020
  • Recently, studies have shown that convolution neural networks are achieving the best performance in image classification, object detection, and image generation. Vision based defect inspection which is more economical than other defect inspection, is a very important for a factory automation. Although supervised anomaly detection algorithm has far exceeded the performance of traditional machine learning based method, it is inefficient for real industrial field due to its tedious annotation work, In this paper, we propose ADGAN, a unsupervised anomaly detection architecture using the variational autoencoder and the generative adversarial network which give great results in image generation task, and demonstrate whether the proposed network architecture identifies anomalous images well on MNIST benchmark dataset as well as our own welding defect dataset.

A Deep Neural Network Model Based on a Mutation Operator (돌연변이 연산 기반 효율적 심층 신경망 모델)

  • Jeon, Seung Ho;Moon, Jong Sub
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.573-580
    • /
    • 2017
  • Deep Neural Network (DNN) is a large layered neural network which is consisted of a number of layers of non-linear units. Deep Learning which represented as DNN has been applied very successfully in various applications. However, many issues in DNN have been identified through past researches. Among these issues, generalization is the most well-known problem. A Recent study, Dropout, successfully addressed this problem. Also, Dropout plays a role as noise, and so it helps to learn robust feature during learning in DNN such as Denoising AutoEncoder. However, because of a large computations required in Dropout, training takes a lot of time. Since Dropout keeps changing an inter-layer representation during the training session, the learning rates should be small, which makes training time longer. In this paper, using mutation operation, we reduce computation and improve generalization performance compared with Dropout. Also, we experimented proposed method to compare with Dropout method and showed that our method is superior to the Dropout one.

A layered-wise data augmenting algorithm for small sampling data (적은 양의 데이터에 적용 가능한 계층별 데이터 증강 알고리즘)

  • Cho, Hee-chan;Moon, Jong-sub
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2019
  • Data augmentation is a method that increases the amount of data through various algorithms based on a small amount of sample data. When machine learning and deep learning techniques are used to solve real-world problems, there is often a lack of data sets. The lack of data is at greater risk of underfitting and overfitting, in addition to the poor reflection of the characteristics of the set of data when learning a model. Thus, in this paper, through the layer-wise data augmenting method at each layer of deep neural network, the proposed method produces augmented data that is substantially meaningful and shows that the method presented by the paper through experimentation is effective in the learning of the model by measuring whether the method presented by the paper improves classification accuracy.

Deep Learning based Raw Audio Signal Bandwidth Extension System (딥러닝 기반 음향 신호 대역 확장 시스템)

  • Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1122-1128
    • /
    • 2020
  • Bandwidth Extension refers to restoring and expanding a narrow band signal(NB) that is damaged or damaged in the encoding and decoding process due to the lack of channel capacity or the characteristics of the codec installed in the mobile communication device. It means converting to a wideband signal(WB). Bandwidth extension research mainly focuses on voice signals and converts high bands into frequency domains, such as SBR (Spectral Band Replication) and IGF (Intelligent Gap Filling), and restores disappeared or damaged high bands based on complex feature extraction processes. In this paper, we propose a model that outputs an bandwidth extended signal based on an autoencoder among deep learning models, using the residual connection of one-dimensional convolutional neural networks (CNN), the bandwidth is extended by inputting a time domain signal of a certain length without complicated pre-processing. In addition, it was confirmed that the damaged high band can be restored even by training on a dataset containing various types of sound sources including music that is not limited to the speech.

Anomaly Data Detection Using Machine Learning in Crowdsensing System (크라우드센싱 시스템에서 머신러닝을 이용한 이상데이터 탐지)

  • Kim, Mihui;Lee, Gihun
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.475-485
    • /
    • 2020
  • Recently, a crowdsensing system that provides a new sensing service with real-time sensing data provided from a user's device including a sensor without installing a separate sensor has attracted attention. In the crowdsensing system, meaningless data may be provided due to a user's operation error or communication problem, or false data may be provided to obtain compensation. Therefore, the detection and removal of the abnormal data determines the quality of the crowdsensing service. The proposed methods in the past to detect these anomalies are not efficient for the fast-changing environment of crowdsensing. This paper proposes an anomaly data detection method by extracting the characteristics of continuously and rapidly changing sensing data environment by using machine learning technology and modeling it with an appropriate algorithm. We show the performance and feasibility of the proposed system using deep learning binary classification model of supervised learning and autoencoder model of unsupervised learning.

A study on Korean multi-turn response generation using generative and retrieval model (생성 모델과 검색 모델을 이용한 한국어 멀티턴 응답 생성 연구)

  • Lee, Hodong;Lee, Jongmin;Seo, Jaehyung;Jang, Yoonna;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Recent deep learning-based research shows excellent performance in most natural language processing (NLP) fields with pre-trained language models. In particular, the auto-encoder-based language model proves its excellent performance and usefulness in various fields of Korean language understanding. However, the decoder-based Korean generative model even suffers from generating simple sentences. Also, there is few detailed research and data for the field of conversation where generative models are most commonly utilized. Therefore, this paper constructs multi-turn dialogue data for a Korean generative model. In addition, we compare and analyze the performance by improving the dialogue ability of the generative model through transfer learning. In addition, we propose a method of supplementing the insufficient dialogue generation ability of the model by extracting recommended response candidates from external knowledge information through a retrival model.

Application of Improved Variational Recurrent Auto-Encoder for Korean Sentence Generation (한국어 문장 생성을 위한 Variational Recurrent Auto-Encoder 개선 및 활용)

  • Hahn, Sangchul;Hong, Seokjin;Choi, Heeyoul
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.157-164
    • /
    • 2018
  • Due to the revolutionary advances in deep learning, performance of pattern recognition has increased significantly in many applications like speech recognition and image recognition, and some systems outperform human-level intelligence in specific domains. Unlike pattern recognition, in this paper, we focus on generating Korean sentences based on a few Korean sentences. We apply variational recurrent auto-encoder (VRAE) and modify the model considering some characteristics of Korean sentences. To reduce the number of words in the model, we apply a word spacing model. Also, there are many Korean sentences which have the same meaning but different word order, even without subjects or objects; therefore we change the unidirectional encoder of VRAE into a bidirectional encoder. In addition, we apply an interpolation method on the encoded vectors from the given sentences, so that we can generate new sentences which are similar to the given sentences. In experiments, we confirm that our proposed method generates better sentences which are semantically more similar to the given sentences.

A study on speech disentanglement framework based on adversarial learning for speaker recognition (화자 인식을 위한 적대학습 기반 음성 분리 프레임워크에 대한 연구)

  • Kwon, Yoohwan;Chung, Soo-Whan;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.447-453
    • /
    • 2020
  • In this paper, we propose a system to extract effective speaker representations from a speech signal using a deep learning method. Based on the fact that speech signal contains identity unrelated information such as text content, emotion, background noise, and so on, we perform a training such that the extracted features only represent speaker-related information but do not represent speaker-unrelated information. Specifically, we propose an auto-encoder based disentanglement method that outputs both speaker-related and speaker-unrelated embeddings using effective loss functions. To further improve the reconstruction performance in the decoding process, we also introduce a discriminator popularly used in Generative Adversarial Network (GAN) structure. Since improving the decoding capability is helpful for preserving speaker information and disentanglement, it results in the improvement of speaker verification performance. Experimental results demonstrate the effectiveness of our proposed method by improving Equal Error Rate (EER) on benchmark dataset, Voxceleb1.

Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation (CAE 알고리즘을 이용한 레이더 강우 보정 평가)

  • Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.453-462
    • /
    • 2021
  • As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.

Nonlinear Vector Alignment Methodology for Mapping Domain-Specific Terminology into General Space (전문어의 범용 공간 매핑을 위한 비선형 벡터 정렬 방법론)

  • Kim, Junwoo;Yoon, Byungho;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.127-146
    • /
    • 2022
  • Recently, as word embedding has shown excellent performance in various tasks of deep learning-based natural language processing, researches on the advancement and application of word, sentence, and document embedding are being actively conducted. Among them, cross-language transfer, which enables semantic exchange between different languages, is growing simultaneously with the development of embedding models. Academia's interests in vector alignment are growing with the expectation that it can be applied to various embedding-based analysis. In particular, vector alignment is expected to be applied to mapping between specialized domains and generalized domains. In other words, it is expected that it will be possible to map the vocabulary of specialized fields such as R&D, medicine, and law into the space of the pre-trained language model learned with huge volume of general-purpose documents, or provide a clue for mapping vocabulary between mutually different specialized fields. However, since linear-based vector alignment which has been mainly studied in academia basically assumes statistical linearity, it tends to simplify the vector space. This essentially assumes that different types of vector spaces are geometrically similar, which yields a limitation that it causes inevitable distortion in the alignment process. To overcome this limitation, we propose a deep learning-based vector alignment methodology that effectively learns the nonlinearity of data. The proposed methodology consists of sequential learning of a skip-connected autoencoder and a regression model to align the specialized word embedding expressed in each space to the general embedding space. Finally, through the inference of the two trained models, the specialized vocabulary can be aligned in the general space. To verify the performance of the proposed methodology, an experiment was performed on a total of 77,578 documents in the field of 'health care' among national R&D tasks performed from 2011 to 2020. As a result, it was confirmed that the proposed methodology showed superior performance in terms of cosine similarity compared to the existing linear vector alignment.