• 제목/요약/키워드: 딥러닝 융합연구

검색결과 439건 처리시간 0.029초

RGB-Depth 카메라와 Deep Convolution Neural Networks 기반의 실시간 사람 양손 3D 포즈 추정 (Real-time 3D Pose Estimation of Both Human Hands via RGB-Depth Camera and Deep Convolutional Neural Networks)

  • 박나현;지용빈;기건;김태연;박혜민;김태성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.686-689
    • /
    • 2018
  • 3D 손 포즈 추정(Hand Pose Estimation, HPE)은 스마트 인간 컴퓨터 인터페이스를 위해서 중요한 기술이다. 이 연구에서는 딥러닝 방법을 기반으로 하여 단일 RGB-Depth 카메라로 촬영한 양손의 3D 손 자세를 실시간으로 인식하는 손 포즈 추정 시스템을 제시한다. 손 포즈 추정 시스템은 4단계로 구성된다. 첫째, Skin Detection 및 Depth cutting 알고리즘을 사용하여 양손을 RGB와 깊이 영상에서 감지하고 추출한다. 둘째, Convolutional Neural Network(CNN) Classifier는 오른손과 왼손을 구별하는데 사용된다. CNN Classifier 는 3개의 convolution layer와 2개의 Fully-Connected Layer로 구성되어 있으며, 추출된 깊이 영상을 입력으로 사용한다. 셋째, 학습된 CNN regressor는 추출된 왼쪽 및 오른쪽 손의 깊이 영상에서 손 관절을 추정하기 위해 다수의 Convolutional Layers, Pooling Layers, Fully Connected Layers로 구성된다. CNN classifier와 regressor는 22,000개 깊이 영상 데이터셋으로 학습된다. 마지막으로, 각 손의 3D 손 자세는 추정된 손 관절 정보로부터 재구성된다. 테스트 결과, CNN classifier는 오른쪽 손과 왼쪽 손을 96.9%의 정확도로 구별할 수 있으며, CNN regressor는 형균 8.48mm의 오차 범위로 3D 손 관절 정보를 추정할 수 있다. 본 연구에서 제안하는 손 포즈 추정 시스템은 가상 현실(virtual reality, VR), 증강 현실(Augmented Reality, AR) 및 융합 현실 (Mixed Reality, MR) 응용 프로그램을 포함한 다양한 응용 분야에서 사용할 수 있다.

딥러닝 모델을 이용한 비전이미지 내의 대상체 분류에 관한 연구 (A Study on The Classification of Target-objects with The Deep-learning Model in The Vision-images)

  • 조영준;김종원
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.20-25
    • /
    • 2021
  • 본 논문은 Deep-learning 기반의 검출모델을 이용하여 연속적으로 입력되는 비디오 이미지 내의 해당 대상체를 의미별로 분류해야하는 문제에 대한 구현방법에 관한 논문이다. 기존의 대상체 검출모델은 Deep-learning 기반의 검출모델로서 유사한 대상체 분류를 위해서는 방대한 DATA의 수집과 기계학습과정을 통해서 가능했다. 대상체 검출모델의 구조개선을 통한 유사물체의 인식 및 분류를 위하여 기존의 검출모델을 이용한 분류 문제를 분석하고 처리구조를 변경하여 개선된 비전처리 모듈개발을 통해 이를 기존 인식모델에 접목함으로써 대상체에 대한 인식모델을 구현하였으며, 대상체의 분류를 위하여 검출모델의 구조변경을 통해 고유성과 유사성을 정의하고 이를 검출모델에 적용하였다. 실제 축구경기 영상을 이용하여 대상체의 특징점을 분류의 기준으로 설정하여 실시간으로 분류문제를 해결하여 인식모델의 활용성 검증을 통해 산업에서의 활용도를 확인하였다. 기존의 검출모델과 새롭게 구성한 인식모델을 활용하여 실시간 이미지를 색상과 강도의 구분이 용이한 HSV의 칼라공간으로 변환하는 비전기술을 이용하여 기존모델과 비교 검증하였고, 조도 및 노이즈 환경에서도 높은 검출률을 확보할 수 있는 실시간 환경의 인식모델 최적화를 위한 선행연구를 수행하였다.

가려진 사람의 자세추정을 위한 의미론적 폐색현상 증강기법 (Semantic Occlusion Augmentation for Effective Human Pose Estimation)

  • 배현재;김진평;이지형
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권12호
    • /
    • pp.517-524
    • /
    • 2022
  • 사람의 자세추정(Human pose estimation)은 사람의 관절 키포인트를 추출하여 자세를 추정하는 방법이다. 폐색현상(Occlusion)이 발생하면, 사람의 관절이 가려지므로 관절 키포인트 추출 성능이 낮아진다. 폐색현상은 총 3가지로 행동할 때 스스로 가려짐, 다른 사물에 의해 가려짐과 배경에 의해 가려짐으로 크게 나뉜다. 본 논문에서는 폐색현상 증강기법을 활용하여 효과적인 자세추정방법을 제안한다. 자세추정방법이 지속적으로 연구되어왔지만, 자세추정방법의 가려짐 현상에 관한 연구는 상대적으로 부족한 상태이다. 이를 해결하기 위해 저자는 사람의 관절을 타겟팅하여 의도적으로 가리는 데이터 증강기법을 제안한다. 본 논문에서의 실험 결과는 의도적으로 폐색현상 증강기법을 활용하면 폐색현상에 강인하며 성능이 올라간 것을 보여준다.

한국어 문서 요약 기법을 활용한 휘발유 재고량에 대한 미디어 분석 (Media-based Analysis of Gasoline Inventory with Korean Text Summarization)

  • 윤성연;박민서
    • 문화기술의 융합
    • /
    • 제9권5호
    • /
    • pp.509-515
    • /
    • 2023
  • 국가 차원의 지속적인 대체 에너지 개발에도 석유 제품의 사용량은 지속적으로 증가하고 있다. 특히, 대표적인 석유 제품인 휘발유는 국제유가의 변동에 그 가격이 크게 변동한다. 주유소에서는 휘발유의 가격 변화에 대응하기 위해 휘발유 재고량을 조절한다. 따라서, 휘발유 재고량의 주요 변화 요인을 분석하여 전반적인 휘발유 소비 행태를 분석할 필요가 있다. 본 연구에서는 주유소의 휘발유 재고량 변화에 영향을 미치는 요인을 파악하기 위해 뉴스 기사를 활용한다. 첫째, 웹 크롤링을 통해 자동으로 휘발유와 관련한 기사를 수집한다. 둘째, 수집한 뉴스 기사를 KoBART(Korean Bidirectional and Auto-Regressive Transformers) 텍스트 요약 모델을 활용하여 요약한다. 셋째, 추출한 요약문을 전처리하고, N-Gram 언어 모델과 TF-IDF(Term Frequency Inverse Document Frequency)를 통해 단어 및 구 단위의 주요 요인을 도출한다. 본 연구를 통해 휘발유 소비 형태의 파악 및 예측이 가능하다.

IoT 기반 교통사고 실시간 인지방법론 연구 (A Study on the Real-time Recognition Methodology for IoT-based Traffic Accidents)

  • 오성훈;전영준;권영우;정석찬
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.15-27
    • /
    • 2022
  • 최근 5년간 차량 단독사고 교통사고 치사율이 전체 사고보다 4.7배 높은 것으로 집계되고 있으며, 차량 단독사고를 즉각적으로 감지하고 대응할 수 있는 시스템 구축이 필요하다. 본 연구는 가드레일에 충격과 차량 진입 감지 IoT(Internet of Thing) 센서를 부착하여 가드레일 충격 발생 시 사고 현장의 영상을 인공지능 기술을 통해 분석하고 구조기관에 전송하여 빠른 구조작업을 수행하여 피해를 최소화 시킬 수 있는 방법론을 제시한다. 해당 구간 내 차량 진입과 가드레일 충격 감지를 위한 IoT 센서 모듈과 차량 이미지 데이터 학습을 통한 인공지능 기반 객체 탐지 모듈을 구현하였다. 그리고, 센서 정보와 영상 데이터 등을 통합적으로 관리하는 모니터링 및 운영 모듈도 구현하였다. 시스템 유효성 검증을 위하여 충격 감지 전송속도와 자동차 및 사람 객체 탐지 정확도, 센서 장애감지 정확도를 측정한 결과, 모두 목표치를 충족하였다. 향후에는 실제 도로에 적용하여 실데이터를 적용한 유효성을 검증하고 상용화할 계획이다. 본 시스템은 도로 안전 향상에 이바지할 것이다.

얼굴 특징점을 활용한 영상 편집점 탐지 (Detection of video editing points using facial keypoints)

  • 나요셉;김진호;박종혁
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.15-30
    • /
    • 2023
  • 최근 미디어 분야에도 인공지능(AI)을 적용한 다양한 서비스가 등장하고 있는 추세이다. 하지만 편집점을 찾아 영상을 이어 붙이는 영상 편집은, 대부분 수동적 방식으로 진행되어 시간과 인적 자원의 소요가 많이 발생하고 있다. 이에 본 연구에서는 Video Swin Transformer를 활용하여, 발화 여부에 따른 영상의 편집점을 탐지할 수 있는 방법론을 제안한다. 이를 위해, 제안 구조는 먼저 Face Alignment를 통해 얼굴 특징점을 검출한다. 이와 같은 과정을 통해 입력 영상 데이터로부터 발화 여부에 따른 얼굴의 시 공간적인 변화를 모델에 반영한다. 그리고, 본 연구에서 제안하는 Video Swin Transformer 기반 모델을 통해 영상 속 사람의 행동을 분류한다. 구체적으로 비디오 데이터로부터 Video Swin Transformer를 통해 생성되는 Feature Map과 Face Alignment를 통해 검출된 얼굴 특징점을 합친 후 Convolution을 거쳐 발화 여부를 탐지하게 된다. 실험 결과, 본 논문에서 제안한 얼굴 특징점을 활용한 영상 편집점 탐지 모델을 사용했을 경우 분류 성능을 89.17% 기록하여, 얼굴 특징점을 사용하지 않았을 때의 성능 87.46% 대비 성능을 향상시키는 것을 확인할 수 있었다.

스킨-림프-칩 상에서 LymphanaxTM 의 림프 형성 촉진능 (LymphanaxTM Enhances Lymphangiogenesis in an Artificial Human Skin Model, Skin-lymph-on-a-chip)

  • 박필준;김민섭;최시은;김현수;정석
    • 대한화장품학회지
    • /
    • 제50권2호
    • /
    • pp.119-129
    • /
    • 2024
  • 인체 피부 림프계는 간질액을 배출하고 면역 시스템을 활성화하는 중요한 역할을 한다. 자외선과 자연적인 노화와 같은 환경 요인들은 종종 이러한 림프관의 구조적 변화를 일으키며, 이로 인해 피부 기능 장애를 발생시키기도 한다. 그러나 이러한 연구를 위한 동물 실험 대체 방안이 없기 때문에 여전히 연구를 진행하기엔 적합하지 않은 제한 사항들이 존재한다. 인체 피부 림프계를 더 잘 이해하고 림프관 형성에 관련된 분자 및 생리학적 변화를 조사하기 위해, 생체 모방 미세유체 플랫폼인 'skin-lymph-on-a-chip'을 제작하여, 새로운 체외 인체 피부 림프 모델을 개발하였다. 간단히 말해, 이 플랫폼은 체외에서 분화된 일차 정상 인간 표피 각질형성세포(NHEKs)와 피부 림프 내피세포(HDLECs)를 공동 배양하는 것을 의미한다. 약 500 시간 동안 자연 발효를 통해 확보하고 집약된 인삼 뿌리 추출물인 LymphanaxTM의 림프관 형성 효과를 평가하기 위해 해당 시스템에 적용하였고, 분자 수준 요인들의 변화는 딥러닝 기반 알고리즘을 사용하여 분석하였다. 결론적으로, LymphanaxTM는 skin-lymph-on-a-chip에서 건강한 림프관 형성을 촉진하였고, 그 성분들이 칩내에서 분화된 NHEKs를 거의 침투하지 않는 결과를 통해, HDELCs에 간접적으로 영향을 미쳤음을 확인하였다. 전반적으로, 이 연구는 기존과 차별화된 체외 인체 피부 림프모델 시스템의 확보와 더불어 이를 통한 LymphanaxTM의 림프 활성화 효과에 대한 새로운 관점을 제공한다.

딥러닝을 이용한 연안 소형 어선 주요 치수 추정 연구 (A study on estimating the main dimensions of a small fishing boat using deep learning)

  • 장민성;김동준;자오양
    • 수산해양기술연구
    • /
    • 제58권3호
    • /
    • pp.272-280
    • /
    • 2022
  • The first step is to determine the principal dimensions of the design ship, such as length between perpendiculars, beam, draft and depth when accomplishing the design of a new vessel. To make this process easier, a database with a large amount of existing ship data and a regression analysis technique are needed. Recently, deep learning, a branch of artificial intelligence (AI) has been used in regression analysis. In this paper, deep learning neural networks are used for regression analysis to find the regression function between the input and output data. To find the neural network structure with the highest accuracy, the errors of neural network structures with varying the number of the layers and the nodes are compared. In this paper, Python TensorFlow Keras API and MATLAB Deep Learning Toolbox are used to build deep learning neural networks. Constructed DNN (deep neural networks) makes helpful in determining the principal dimension of the ship and saves much time in the ship design process.

5G 기반 물류 자동화 로봇을 활용한 스마트 물류 창고 시스템 구현을 위한 연구 (A Research to realize a smart logistics warehouse system using 5G-based Logistics Automation Robot)

  • 박태욱;윤만석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.532-534
    • /
    • 2022
  • 5G 시대가 상용화를 넘어 고도화되는 시점에서 기존 단순 물류 창고 업무를 처리하던 곳들이 IT 융합기술과 플랫폼을 접목하면서 스마트 물류 창고로 탈바꿈하고 있다. 스마트 물류 창고는 5G 기반으로 AI, 딥 러닝, 로봇 기술로 제품의 정확한 수요 및 재고 예측이 가능하고, 입출고 상태에 대한 정보를 실시간으로 제공한다. 이커머스 시장이 커짐에 따라 스마트 물류 분야도 급격한 성장을 이루고 있다. 본 논문에서는 스마트 물류 창고 시스템을 구현하며, 5G 기반 물류 자동화 로봇 활용으로 신속하고 정확한 물류 시스템 구축하는 방법을 연구하여 제안한다.

  • PDF

Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크 (WDENet: Wavelet-based Detail Enhanced Image Denoising Network)

  • 정군;위승우;정제창
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.725-737
    • /
    • 2021
  • 현재 카메라 성능이 점점 발전해 왔지만 카메라로부터 얻은 디지털 영상에는 잡음 (Noise)이 존재하고 이는 높은 해상도의 영상을 획득하는 데 있어서 방해요소로 작용한다. 전통적으로 잡음을 제거하기 위하여 필터링 방법을 사용해 왔고 최근 딥 러닝 기법의 하나인 합성곱 신경망 (Convolutional Neural Network)은 영상 잡음 제거 분야에서 전통적인 기법보다 좋은 성능을 나타내고 있어 많은 연구가 진행되고 있다. 하지만 합성곱 신경망으로 학습하는 과정에서 영상 내 디테일한 부분이 손실될 수 있는 문제점이 있다. 본 논문에서는 웨이블릿 변환 (Wavelet Transform)을 기반으로 영상 내 디테일 정보도 같이 학습하여 영상 디테일을 향상하는 잡음 제거 합성곱 신경망 네트워크를 제안한다. 제안하는 네트워크는 디테일 향상 서브 네트워크 (Detail Enhancement Subnetwork)와 영상 잡음 추출 서브 네트워크 (Noise Extraction Subnetwork)를 이용하게 된다. 실험은 가우시안 잡음과 실제 카메라 잡음을 통해 진행했고 제안하는 방법은 기존 알고리듬보다 디테일 손실 문제를 효과적으로 해결할 수 있었고 객관적 품질 평가와 주관적 품질 비교에서 모두 우수한 결과가 나온 것을 확인하였다.