• 제목/요약/키워드: 딥러닝 알고리즘

검색결과 916건 처리시간 0.027초

인공지능 기반의 데이터 분석을 적용한 건강검진 지식 베이스 구축 모델링 연구 (Study on the Modeling of Health Medical Examination Knowledge Base Construction using Data Analysis based on AI)

  • 김봉현
    • 융합정보논문지
    • /
    • 제10권6호
    • /
    • pp.35-40
    • /
    • 2020
  • 미래 사회로 접어들면서, 건강한 삶의 증대를 위한 노력은 현대인들의 주요 관심 분야이다. 특히, ICT 기술과 경쟁력 있는 의료산업 환경을 융합하여 건강한 삶을 위한 기술 개발은 차세대 성장 동력으로 자리잡고 있다. 따라서, 본 논문에서는 건강 검진 프로세스에서 검진 결과에 대한 인공지능 기반의 데이터 분석을 적용하여 종합 판정의 신뢰성을 향상시킬 수 있는 지식 베이스 모델링을 구축하는 연구를 수행하였다. 이를 위해, 딥러닝 분석을 통한 알고리즘을 설계하여 검사 결과지수를 산출, 검증하고, 판정 지식을 통한 종합 검진 정보를 제공하는 모델링을 연구하였다. 제안한 모델링의 적용을 통해, 국민 건강에 대한 빅데이터 분석, 활용이 가능하여 의료비 절감 및 건강 증대의 효과를 기대할 수 있다.

순환 신경망 기술을 이용한 코스피 200 지수에 대한 예측 모델 개발 및 성능 분석 연구 (Development and Performance Analysis of Predictive Model for KOSPI 200 Index using Recurrent Neural Networks)

  • 김성수;홍광진
    • 한국산업정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.23-29
    • /
    • 2017
  • Wealthfront, Betterment 등의 성공에 힘입어 전세계적으로 알고리즘을 통한 자동적인 자산분배 시스템인 로보어드바이저에 대한 관심이 증가하고 있다. 로보 어드바이저는 자산을 관리하는데 있어 사람의 개입을 최소화 하기 때문에 서비스를 이용하는데 드는 비용을 줄일 수 있으며 사람의 심리적 요인을 배제할 수 있다는 장점을 지닌다. 본 논문에서는 기존의 기술적 분석 기법을 대체하기 위하여 딥러닝 기술을 이용한 코스피 200 선물지수 예측 모델을 개발하고 그 성능을 분석하였다. 모델의 성능 분석 결과 제안하는 모델은 보합세에 놓인 종목의 방향성과 주가를 예측하는 문제에 활용 될 수 있음을 확인하였고, 향후 본 연구에서 제안하는 모델을 기존의 기술적 분석과 결합하여 로보어드바이저 서비스에 적용할 수 있음을 확인하였다.

RGB-Depth 카메라와 Deep Convolution Neural Networks 기반의 실시간 사람 양손 3D 포즈 추정 (Real-time 3D Pose Estimation of Both Human Hands via RGB-Depth Camera and Deep Convolutional Neural Networks)

  • 박나현;지용빈;기건;김태연;박혜민;김태성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.686-689
    • /
    • 2018
  • 3D 손 포즈 추정(Hand Pose Estimation, HPE)은 스마트 인간 컴퓨터 인터페이스를 위해서 중요한 기술이다. 이 연구에서는 딥러닝 방법을 기반으로 하여 단일 RGB-Depth 카메라로 촬영한 양손의 3D 손 자세를 실시간으로 인식하는 손 포즈 추정 시스템을 제시한다. 손 포즈 추정 시스템은 4단계로 구성된다. 첫째, Skin Detection 및 Depth cutting 알고리즘을 사용하여 양손을 RGB와 깊이 영상에서 감지하고 추출한다. 둘째, Convolutional Neural Network(CNN) Classifier는 오른손과 왼손을 구별하는데 사용된다. CNN Classifier 는 3개의 convolution layer와 2개의 Fully-Connected Layer로 구성되어 있으며, 추출된 깊이 영상을 입력으로 사용한다. 셋째, 학습된 CNN regressor는 추출된 왼쪽 및 오른쪽 손의 깊이 영상에서 손 관절을 추정하기 위해 다수의 Convolutional Layers, Pooling Layers, Fully Connected Layers로 구성된다. CNN classifier와 regressor는 22,000개 깊이 영상 데이터셋으로 학습된다. 마지막으로, 각 손의 3D 손 자세는 추정된 손 관절 정보로부터 재구성된다. 테스트 결과, CNN classifier는 오른쪽 손과 왼쪽 손을 96.9%의 정확도로 구별할 수 있으며, CNN regressor는 형균 8.48mm의 오차 범위로 3D 손 관절 정보를 추정할 수 있다. 본 연구에서 제안하는 손 포즈 추정 시스템은 가상 현실(virtual reality, VR), 증강 현실(Augmented Reality, AR) 및 융합 현실 (Mixed Reality, MR) 응용 프로그램을 포함한 다양한 응용 분야에서 사용할 수 있다.

가상현실 기반의 인공지능 영어회화 시스템 (English Conversation System Using Artificial Intelligent of based on Virtual Reality)

  • 천은영
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.55-61
    • /
    • 2019
  • 외국어 교육을 실현하기 위하여 기존의 다양한 교육 매체들이 제공되고 있지만, 교구 및 매체프로그램에 대한 비용이 많이 들고 실시간 대응력이 떨어지는 단점이 존재한다. 이 논문에서는 VR과 음성인식을 기반으로 한 인공지능 유형의 영어회화 시스템을 제안한다. 시스템 구축을 위해 Google CardBoard VR과 Google Speech API를 이용하며 가상현실 환경 제공 및 대화를 위한 인공지능 알고리즘을 개발하였다. 제안하는 음성인식 서버시스템에서는 사용자가 발화한 문장을 단어 단위로 분리해 데이터베이스에 저장된 데이터 단어들과 비교하여 확률적으로 가장 높은 것을 답으로 제공할 수 있으며 사용자들이 가상현실의 인물과 적절한 대화 및 응답이 가능하다. 대화가 제공되는 기능은 상황별 대화와 주제에 독립적이며, AI 비서와 나눈 대화 내용을 사용자 시스템에서 실시간 확인이 가능하도록 구현하였고 실험을 통하여 음성인식에 대한 응답비율을 확인하였다. 이 논문에서 제안하는 가상현실과 음성인식 기능을 접목한 시스템을 통하여 4차 산업혁명에 관련한 가상교육 콘텐츠 서비스 확장에 이바지할 것을 기대한다.

YOLO알고리즘을 활용한 시각장애인용 식사보조 시스템 개발 (Development a Meal Support System for the Visually Impaired Using YOLO Algorithm)

  • 이군호;문미경
    • 한국전자통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.1001-1010
    • /
    • 2021
  • 시각이 온전한 사람들은 식사를 할 때 시각에 대한 의존도를 깊게 인지하지 못한다. 그러나 시각장애인은 식단에 어떤 음식이 있는지 알지 못하기 때문에 옆에 있는 보조인이 시각장애인 수저로 음식의 위치를 시계방향 또는 전후좌우 등 일정한 방향으로 설명하여 그릇 위치를 확인한다. 본 논문에서는 시각장애인이 스마트폰의 카메라를 이용하여 자신의 식단을 비추면 각각의 음식 이미지를 인식하여 음성으로 음식의 이름을 알려주는 식사보조 시스템의 개발 내용에 대해 기술한다. 이 시스템은 음식과 식기도구(숟가락)의 이미지를 학습한 YOLO모델을 통해 숟가락이 놓인 음식을 추출해 내고, 이 음식이 무엇인지를 인식하여 이를 음성으로 알려준다. 본 시스템을 통해 시각장애인은 식사보조인의 도움없이 식사를 할 수 있음으로써 자립의지와 만족도를 높일 수 있을 것으로 기대한다.

딥러닝 사물 인식 알고리즘(YOLOv3)을 이용한 미세조류 인식 연구 (Microalgae Detection Using a Deep Learning Object Detection Algorithm, YOLOv3)

  • 박정수;백지원;유광태;남승원;김종락
    • 한국물환경학회지
    • /
    • 제37권4호
    • /
    • pp.275-285
    • /
    • 2021
  • Algal bloom is an important issue in maintaining the safety of the drinking water supply system. Fast detection and classification of algae images are essential for the management of algal blooms. Conventional visual identification using a microscope is a labor-intensive and time-consuming method that often requires several hours to several days in order to obtain analysis results from field water samples. In recent decades, various deep learning algorithms have been developed and widely used in object detection studies. YOLO is a state-of-the-art deep learning algorithm. In this study the third version of the YOLO algorithm, namely, YOLOv3, was used to develop an algae image detection model. YOLOv3 is one of the most representative one-stage object detection algorithms with faster inference time, which is an important benefit of YOLO. A total of 1,114 algae images for 30 genera collected by microscope were used to develop the YOLOv3 algae image detection model. The algae images were divided into four groups with five, 10, 20, and 30 genera for training and testing the model. The mean average precision (mAP) was 81, 70, 52, and 41 for data sets with five, 10, 20, and 30 genera, respectively. The precision was higher than 0.8 for all four image groups. These results show the practical applicability of the deep learning algorithm, YOLOv3, for algae image detection.

합성곱 신경망 기반 환경잡음에 강인한 교통 소음 분류 모델 (Convolutional neural network based traffic sound classification robust to environmental noise)

  • 이재준;김완수;이교구
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.469-474
    • /
    • 2018
  • 도시 유동인구가 증가함에 따라 도시 환경 소음에 관한 연구의 중요성이 증가하고 있다. 본 연구에서는 교통상황에서 발생하는 이상 소음을 최근 환경 소음 분류 연구에서 높은 성능을 보이는 딥러닝 알고리즘을 이용하여 분류한다. 구체적으로는 타이어 제동 마찰음, 자동차 충돌음, 자동차 경적음, 정상 소음 네 개의 클래스에 대하여 합성곱 신경망을 이용하여 분류한다. 또한, 실제 교통 상황에서의 환경잡음에 강인한 분류 성능을 갖기 위해 빗소리, 바람 소리, 군중 소리의 세 가지 환경잡음을 설정하였고 이를 활용하여 분류 모델을 설계하였으며 3 dB SNR(Signal to Noise Ratio) 조건에서 88 % 이상의 분류 성능을 가진다. 제시한 교통 소음에 대하여 기존 선행연구 대비 높은 분류 성능을 보이고, 빗소리, 바람 소리, 군중 소리의 세 가지 환경잡음에 강인한 교통 소음 분류 모델을 제안한다.

대형 과수원 사과 분류 시스템 (Large orchard apple classification system)

  • 김월용;신승중
    • 문화기술의 융합
    • /
    • 제4권4호
    • /
    • pp.393-399
    • /
    • 2018
  • 근례 무인화의 발전은 계속되고 있고, AI무인화의 발전은 산업, 복지, 인력등 인력으로 해결해 오던 작업들을 좀더 인력보다 효율적이고 정확하고 신속하게하는 것을 목표로 하고 있다. AI무인화 기술은 다양한 곳에서 발전하고 있는데 이중 많은 산업체나 공장에서 무인화 시스템으로 대대적 전환하는 시점이다. 우리는 이 점을 착안하여 대형 과수원에서 한번에 레일이 쏟아져 들어오는 과일들을 인력이 아닌 인공지능(AI) 핵심 기술중 하나인 Deep Learning 기술을 활용하여 대형 과수원에서 사람이 직접 과일을 분류하지 않아도 자동화 기계가 과일을 종류별, 등급별로 나누어 원산지와 품종 등급별로 나누어 많은 인력을 소비하지 않고 관리자의 감독하에 가동가능한 무인화 과일 분류 기계를 연구하고자 한다. 이러한 무인 자동화 분류 시스템은 인력을 최소한으로 줄여 인건비를 줄이고, 사람이 할 수 있는 실수나 오류들을 최소한으로 줄여 일의 효율성을 증진시킬 수 있도록 하는 것을 목표로 본 연구를 진행하고자 한다.

유도형 전력선 통신과 연동된 SSD 기반 화재인식 및 알림 시스템 (SSD-based Fire Recognition and Notification System Linked with Power Line Communication)

  • 양승호;손경락;정재환;김현식
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.777-784
    • /
    • 2019
  • 인적이 드문 한적한 곳이나 산악 지역에서 화재가 발생 하였을 때 화재 상황을 정확하게 파악하고 적절한 초동 대처를 한다면 피해를 최소화할 수 있으므로 사전 화재인지시스템과 자동알림시스템이 요구된다. 본 연구에서는 객체인식을 위한 딥러닝 알고리즘 중 Faster-RCNN 및 SSD(single shot multibox detecter)을 사용한 화재 인식시스템을 전력선 통신과 연동하여 자동알림시스템을 시연하였으며 향 후 고압송전망을 이용한 산불화재 감시에 응용 가능함을 제시하였다. 학습된 모델을 장착한 라즈베리파이에 파이카메라를 설치하여 화재 영상인식을 수행하였으며, 검출된 화재영상은 유도형 전력선 통신망을 통하여 모니터링 PC로 전송하였다. 학습 모델별 라즈베리파이에서의 초당 프레임 율은 Faster-RCNN의 경우 0.05 fps, SSD의 경우 1.4 fps로 SSD의 처리속도가 Faster-RCNN 보다 28배 정도 빨랐다.

CNN 기법을 활용한 터널 암판정 예측기술 개발 (Rock Classification Prediction in Tunnel Excavation Using CNN)

  • 김하영;조래훈;김규선
    • 한국지반공학회논문집
    • /
    • 제35권9호
    • /
    • pp.37-45
    • /
    • 2019
  • 터널 굴착 시 신속한 막장면 상태 파악 및 적절한 지보패턴 결정은 터널 붕락사고의 예방 및 안정적인 굴진에 매우 중요하다. 본 연구에서는 딥러닝 기법을 활용하여 막장면 상태에 따른 암반상태 분류를 신속하게 결정할 수 있는 기술을 개발하였으며, CNN 기법을 이용한 암반상태 분류방법 및 예측 정확도 개선 방법 등을 제시하고 있다. 수 만개의 이미지가 사전 학습된 VGG16 모델을 알고리즘으로 적용하였고, 1,469개의 터널 막장면 이미지에 대한 학습을 통하여 5개 등급으로 암반상태를 분류하였다. 본 연구에서의 예측 정확도는 최대 83.9% 수준을 나타내었으며, 향후 추가적인 이미지 축적을 통해 암반상태 평가자에 따른 편차를 줄인 객관적이고 정량적 암반상태 분류방법으로 활용 가능할 것으로 판단된다.