• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.031 seconds

Detection of Dangerous Things to Infants through Image Analysis and Deep Learning (이미지 분석과 딥 러닝을 통한 영유아 위험물 탐지)

  • Kim, Hui-Joon;Park, Kil-Seop;Seo, Yeong-Hak;Kim, Kyung-Sup
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.845-848
    • /
    • 2017
  • In this paper, we implemented a system to detect dangerous situations by recognizing the dangerous elements for infants by reading 2D images of children's houses, parks, playgrounds, and living rooms where infants are present through Faster R-CNN. We have implemented a detection model based on data that can be easily obtained from real life. Currently, machine learning is commercialized based on speech recognition and behavior data. However, this model can be applied to various service fields Respectively.

Analysis of AI-based techniques for predicting water level according to rainfall (강우에 따른 수위 예측을 위한 AI 기반 기법 분석)

  • Kim, Jin Hyuck;Kim, Chung-Soo;Kim, Cho-Rong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.294-294
    • /
    • 2021
  • 강우에 따른 수위예측은 수자원 관리 및 재해 예방에 있어 중요하다. 기존의 수문분석은 해당지역의 지형 데이터, 매개변수 최적화 등 수위예측 분석에 있어 어려움을 동반한다. 최근 AI(Artificial Intelligence) 기술의 발전에 따라, 수자원 분야에 AI 기술을 활용하는 연구가 수행되고 있다. 본 연구에서는 데이터 간의 관계를 포착할 수 있는 AI 기반의 기법을 이용하여 강우에 따른 수위예측을 실시하였다. 연구대상 유역으로는 과거 수문데이터가 풍부한 설마천 유역으로 선정하였다. AI 기법으로는 머신러닝 중 SVM (Support Vector Machine)과 Gradient boosting 기법을 이용하였으며, 딥러닝으로는 시계열 분석에 사용되는 RNN (Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크을 이용하여 수위 예측 분석을 수행하였다. 성능지표로는 수문분석에 주로 사용되는 상관계수와 NSE (Nash-Sutcliffe Efficiency)를 이용하였다. 분석결과 세 기법 모두 강우에 따른 수위예측을 우수하게 수행하였다. 이 중, LSTM 네트워크는 과거데이터를 이용한 보정기간이 늘어날수록 더욱 높은 성능을 보여주었다. 우리나라의 집중호우와 같은 긴급 재난이 우려되는 상황 시 수위예측은 빠른 판단을 요구한다. 비교적 간편한 데이터를 이용하여 수위예측이 가능한 AI 기반 기법을 적용할 시 위의 요구사항을 충족할 것이라 사료된다.

  • PDF

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

YOLO Driving Assistance System Using Model Car (모형차를 이용한 YOLO 주행 보조 시스템)

  • Kim, Jea-gyun;Heo, Hoon;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.671-674
    • /
    • 2018
  • In this study, we implement a YOLO driving assistance system using a model car. The YOLO is an object detection and recognition algorithm using deep running which is becoming an issue recently. The system alerts the lane departure by applying the image processing technology to the image acquired through the camera, recognizes the objects using the YOLO, and performs various functions according to the type of the object and the distance between the vehicle. the YOLO, which is superior to the existing object detection and recognition algorithm, improves the performance of the driving assist system without additional equipment. The driving assist system using the YOLO will ensure the safety of the driver with low cost.

  • PDF

Study for Drowsy Driving Detection & Prevention System (졸음운전 감지 및 방지 시스템 연구)

  • Ahn, Byeong-tae
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.3
    • /
    • pp.193-198
    • /
    • 2018
  • Recently, the casualties of automobile traffic accidents are rapidly increasing, and serious accidents involving serious injury and death are increasing more than those of ordinary people. More than 70% of major accidents occur in drowsy driving. Therefore, in this paper, we studied the drowsiness prevention system to prevent large-scale disasters of traffic accidents. In this paper, we propose a real-time flicker recognition method for drowsy driving detection system and drowsy recognition according to the increase of carbon dioxide. The drowsy driving detection system applied the existing image detection and the deep running, and the carbon dioxide detection was developed based on the IoT. The drowsy prevention system using both of these techniques improved the accuracy compared to the existing products.

Integrated Video Analytics for Drone Captured Video (드론 영상 종합정보처리 및 분석용 시스템 개발)

  • Lim, SongWon;Cho, SungMan;Park, GooMan
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.243-250
    • /
    • 2019
  • In this paper, we propose a system for processing and analyzing drone image information which can be applied variously in disasters-security situation. The proposed system stores the images acquired from the drones in the server, and performs image processing and analysis according to various scenarios. According to each mission, deep-learning method is used to construct an image analysis system in the images acquired by the drone. Experiments confirm that it can be applied to traffic volume measurement, suspect and vehicle tracking, survivor identification and maritime missions.

Development of Traffic Accident Prevention System in School-zone Based on Artificial Intelligence (인공지능을 활용한 어린이 보호구역 사고방지 시스템 개발)

  • Park, JunHyeong;Moon, Byeongsoo;Kim, Bumjun;Park, Kunhyung;Kim, Yerim;Kim, Hyunghoon;Shim, Hyeon-min
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.870-872
    • /
    • 2020
  • 본 시스템은 어린이보호구역에 발생하는 차량사고가 불법주정차된 차량으로 인한 사각지대에 의해 발생되는 것에 착안하여 보행자를 인식하여 운전자들에게 알려 안전운전을 유도하여 사고를 예방해 주는 시스템이다 본 시스템은 영상인식장치, 경광장치, 중계장치, 차량 내 경고장치, 원격 트래픽 경고 수신기로 구성되어 있으며 영상인식장치가 edge-TPU 장치를 활용하여 카메라로부터 입력받은 영상을 모바일넷 기반의 딥러닝으로 처리하여 보행자, 차량, 그밖의 물체를 인식한다. 보행자가 인식되면 외부에서 경광장치가 발광하여 신호를 보내고, 중계장치를 통해 차량 내 경고장치로 보행자 경고 신호를 보낸다. 실험 결과 영상인식을 통해 보행자와 차량을 분류 인식할 수 있음을 확인하였다. 이러한 시스템은 어린이 보호구역에서 발생할 수 있는 교통사고를 방지하기 위해 효과적임을 확인할 수 있었다.

Sentiment Prediction using Emotion and Context Information in Unstructured Documents (비정형 문서에서 감정과 상황 정보를 이용한 감성 예측)

  • Kim, Jin-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.40-46
    • /
    • 2020
  • With the development of the Internet, users share their experiences and opinions. Since related keywords are used witho0ut considering information such as the general emotion or genre of an unstructured document such as a movie review, the sensitivity accuracy according to the appropriate emotional situation is impaired. Therefore, we propose a system that predicts emotions based on information such as the genre to which the unstructured document created by users belongs or overall emotions. First, representative keyword related to emotion sets such as Joy, Anger, Fear, and Sadness are extracted from the unstructured document, and the normalized weights of the emotional feature words and information of the unstructured document are trained in a system that combines CNN and LSTM as a training set. Finally, by testing the refined words extracted through movie information, morpheme analyzer and n-gram, emoticons, and emojis, it was shown that the accuracy of emotion prediction using emotions and F-measure were improved. The proposed prediction system can predict sentiment appropriately according to the situation by avoiding the error of judging negative due to the use of sad words in sad movies and scary words in horror movies.

Development of Checking System for Emergency using Behavior-based Object Detection (행동기반 사물 감지를 통한 위급상황 확인 시스템 개발)

  • Kim, MinJe;Koh, KyuHan;Jo, JaeChoon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.140-146
    • /
    • 2020
  • Since the current crime prevention systems have a standard mechanism that victims request for help by themselves or ask for help from a third party nearby, it is difficult to obtain appropriate help in situations where a prompt response is not possible. In this study, we proposed and developed an automatic rescue request model and system using Deep Learning and OpenCV. This study is based on the prerequisite that immediate and precise threat detection is essential to ensure the user's safety. We validated and verified that the system identified by more than 99% of the object's accuracy to ensure the user's safety, and it took only three seconds to complete all necessary algorithms. We plan to collect various types of threats and a large amount of data to reinforce the system's capabilities so that the system can recognize and deal with all dangerous situations, including various threats and unpredictable cases.

LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction (시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례)

  • Lee, Hyun-Sang;Oh, Sehwan
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.