• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.033 seconds

Analyzing Characteristics of Code Refactoring for Python Deep-Learning Applications (파이썬 딥러닝 응용의 코드 리팩토링 특성 분석)

  • Kim, Dong Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.754-764
    • /
    • 2022
  • Code refactoring refers to a maintenance task to change the code of a software system in order to consider new requirements, fix bugs, and restructure code. There have been various studies of refactoring subjects such as refactoring types, refactoring benefits, and CASE tools. However, Java applications rather than python ones have been benefited by refactoring-based coding practices. There are few cases of refactoring stuides on Python applications. This paper finds and analyzes single refactoring operations and composite refactoring operations for Python-based deep learning systems. In addition, we find that there is a statistically significant difference in the frequency of occurrence of single and complex refactoring operations in the two groups of deep learning applications and typical Python applications. Furthermore, we analyze keywords of commit messages to catch refactoring intentions of software developers.

Predicting the Politeness of an Utterance with Deep Learning (딥러닝 방법을 이용한 발화의 공손함 판단)

  • Lee, Chanhee;Whang, Taesun;Kim, Minjeong;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.280-283
    • /
    • 2019
  • 공손함은 인간 언어의 가장 흥미로운 특징 중 하나이며, 자연어처리 시스템이 인간과 자연스럽게 대화하기 위해 필수적으로 모델링해야 할 요소이다. 본 연구에서는 인간의 발화가 주어졌을 때, 이의 공손함을 판단할 수 있는 시스템을 구현한다. 이를 위해 딥러닝 방법인 양방향 LSTM 모델과, 최근 자연어처리 분야에서 각광받고 있는 BERT 모델에 대해 성능 비교를 수행하였다. 이 두 기술은 모두 문맥 정보를 반영할 수 있는 모델로서, 같은 단어라도 문맥 정보에 따라 의미가 달라질 수 있는 공손함의 미묘한 차이를 반영할 수 있다. 실험 결과, 여러 설정에 거쳐 BERT 모델이 양방향 LSTM 모델보다 더 우수함을 확인하였다. 또한, 발화가 구어체보다 문어체에 가까울 수록 딥러닝 모델의 성능이 더 좋은 것으로 나타났다. 제안된 두 가지 방법의 성능을 인간의 판단 능력과 비교해본 결과, 위키피디아 도메인에서 BERT 모델이 91.71%의 성능을 보여 인간의 정확도인 86.72%를 상회함을 확인하였다.

  • PDF

Smart Advertising Digital Signage using Deep Learning (딥러닝을 이용한 스마트 광고 디지털 사이니즈)

  • Kim, Ki-Tae;Choi, Jae-Hyuk;Cho, Seung-Bin;Kang, Seong-Gu;Lee, Se-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.253-254
    • /
    • 2019
  • 본 논문에서는 딥러닝과 OpenCV를 이용해서 사람의 얼굴에서 나이 성별을 추출하고 추출된 데이터를 기반으로 야외에 설치된 디스플레이 광고를 맞춤형으로 제공한다 이를 통해 광고를 좀 더 효과적으로 사용할 수 있는 방안을 제공한다.

  • PDF

Mobile Food Recommendation System for Patients U sing Light-weight Deep Learning and Knowledge Bases (경량 딥러닝과 지식베이스를 활용한 모바일 질환별 식품 추천 시스템)

  • Hyeon, Bumsu;Kim, Dohyun;Lee, SangKeun
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.534-535
    • /
    • 2020
  • 본 논문에서는 딥러닝과 지식베이스를 융합하여 활용한 질환 인식 및 식품 추천 시스템을 제안한다. 제안하는 시스템은 온전히 모바일 디바이스 내에서 작동하는 시스템이다. 본 시스템은 압축된 딥러닝 모델을 이용해 사용자 대화 텍스트를 분석하여 사용자의 질환을 예측한다. 그 후, 지식베이스를 기반으로 해당 질환 관리에 도움이 되는 식품을 매칭하고 사용자에게 추천한다. 이는 사용자 친화적 헬스케어 애플리케이션으로써 체크리스트 작성 등 번거로운 작업 없이도 사용자에게 유용한 건강 정보를 제공할 수 있다.

Improvement and effect verification OpenMind system based on PSO algorithm (PSO 알고리즘 기반 OpenMind 시스템 개선 및 효과 검증)

  • Won, Tae-Yeon;Yang, Seung-Yun;Kim, Jung-Myoung;Weon, Ill-Young;Kim, Hyun-Jung
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.836-839
    • /
    • 2019
  • 여러 분야에서 각광받는 딥러닝은 학습시간이 오래 걸리고, 고가의 장비들이 요구된다. 이러한 이유로 저사양 머신들을 이용한 분산 러닝 시스템들이 연구되기 시작했다. 본 논문은 " PSO 알고리즘을 이용한 분산 딥러닝 시스템" 을 개선했고, 그 결과 개선한 시스템의 머신 개수가 1 대 일 때 정확도가 92.8%까지 향상되었고, 머신 개수가 10 대 일 때 정확도가 93.4%까지 향상되었다. 이를 기반으로 저사양의 머신들을 결합한 분산 러닝 시스템이 고가의 장비를 사용하지 않고도 좋은 결과를 얻을 수 있다는 것을 확인했다.

Brief Overview of Deep Learning based Anomaly Detection for Smart Surveillance System (스마트 관제를 위한 딥러닝 기반 이상행동 기술 동향 분석)

  • Lee, Jiae;Mun, Sungchul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.14-16
    • /
    • 2019
  • 스마트관제 시스템은 딥러닝 서버내 학습된 백본 네트워크 모델이 실시간으로 스트리밍 되는 CCTV 영상으로부터 이상행동 패턴을 선별적으로 탐지하고 관제요원에게 전달하여, 사전에 사건사고를 예방하거나 즉시 대응 체계의 유연한 운영을 가능케하는 시스템이다. 최근 지능형 CCTV(Closed Circuit Television) 서비스가 일부 지역에 선별 관제의 형태로 시범적으로 운영되고 있는 상황이다. 지능형 시범서비스는 공공 영역에서 선별 CCTV 관제의 형태로 이상행동 상황을 즉각 인지하여 사건사고를 예방하거나 피해를 최소화하고자 하는 목적으로 주로 사용되고 있다. 그러나, 범죄 등의 특정 시나리오에만 한정해서도 이상 행동 유형이 너무나 다양하기 때문에 이상행동 영상의 사전분류(Annotation)를 통해 딥러닝 모델을 학습시키는 것이 현실적으로 어려운 상황이다. 따라서 본고에서는 최신 이상 행동 탐지(Anomaly detection) 알고리즘과 응용사례를 분석하여 실제 현장에 적용할 수 있는 현장 중심의 기법을 제안하고자 한다.

  • PDF

Crack detection system for exterior wall in a drone camera image using YOLO deep learning technique (YOLO 딥러닝 기법을 이용한 드론카메라 영상 내 건물 외벽 균열 검출 시스템)

  • Yun, Tae-Jin;Jeon, Jin-Woo;Ko, Byung-Yoon;Woo, Hyun-Koo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.303-304
    • /
    • 2019
  • 본 논문에서는 자연재해나 노후화로 인해 많은 건물의 외벽에 균열(Crack)이 생기고 있고, YOLO 딥러닝 기법을 이용하여 텐서플로우(Tensorflow)기반 균열 데이터의 학습 과정을 거쳐 가중치 파일을 획득하고, 이를 기반으로 효율적으로 건물 관리를 할 수 있는 드론(Drone)에 장착된 카메라를 이용한 실시간 영상으로 건물 외벽 균열을 촬영하고 균열을 감지하여 사용자 모니터에 감지된 균열을 경계 상자를 통해 검출하고, 검출 사진과 위치를 기록하도록 시스템을 개발하였다.

  • PDF

Study on Implementation of Restaurant Recommendation System based on Deep Learning-based Consumer Data (딥러닝 기반의 소비자 데이터를 응용한 외식업체 추천 시스템 구현에 관한 연구)

  • Kim, Hee-young;Jung, Sun-mi;Kim, Woo-suk;Ryu, Gi-hwan;Son, Hyeon-kon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.437-442
    • /
    • 2021
  • In this study, a recommendation algorithm was implemented by learning a deep learning-based classification model for consumer data. For this purpose, a meaningful result is presented as a result of learning using ResNet50, which is commonly used in classification tasks by converting user data into images.

Analysis of Emotions in Lyrics by Combining Deep Learning BERT and Emotional Lexicon (딥러닝 모델(BERT)과 감정 어휘 사전을 결합한 음원 가사 감정 분석)

  • Yoon, Kyung Seob;Oh, Jong Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.471-474
    • /
    • 2022
  • 음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.

  • PDF

Research of LOCA-Based Approach Applied to Users' Preferences on Items in Different Domains (상이한 아이템에 대한 사용자 선호도 활용 LOCA 접근 방법 연구)

  • Paik, Juryon;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.59-60
    • /
    • 2022
  • 갈수록 개인화되어 가는 추천시스템은 다양한 모델에 의해 그 성능이 향상되고 있으며 최근 추세는 다른 분야와 마찬가지로 딥러닝 기반 모델을 적용하여 추천 품질을 향상하고 있다. 그러나 대다수의 추천시스템은 하나의 도메인에서 개별적으로 사용될 뿐, 유사도메인이나 상이한 도메인이나 모두 다른 도메인에서의 사용자 성향이나 아이템 유사성을 거의 또는 전혀 고려하지 않고 있다. 이는 추천결과의 sparsity와 cold-start 문제를 더 악화시키는 원인이 된다. 본 논문은 다양한 딥러닝 모델 적용 추천 모델 중 오토인코더 모델을 지역특화 협업에 적용한 모델을 간략하게 소개하고 해당 모델을 상이한 도메인 간의 적용하기 위한 첫 단계로 손실함수 부분에 대해 개념적으로 설명하고자 한다.

  • PDF