Annual Conference on Human and Language Technology
/
2019.10a
/
pp.443-448
/
2019
본 논문은 공공 데이터 Open API와 TMDB(The Movie Database) API를 이용하여 사용자의 선호 영화를 Google에서 제공해주는 Tensoflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 영화를 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 사용자가 쉽게 영화를 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 최적의 영화 Contents를 추천함과 아울러 기존 영화의 특성을 학습하여 흥행할 신규 영화를 예측하는 기능 또한 제공한다. 본 애플리케이션에 사용된 신규 영화 흥행 예측 모델은 약 85%의 정확도를 보이며 사용자 맞춤추천의 경우 기존 장르 추천이나 협업 필터링 추천보다 딥러닝을 통한 장르, 감독, 배우 등의 보다 세밀한 학습 추천이 가능하다.
Park, Kyongseok;Yu, Chan Hee;Kim, Yuseon;Um, Jung-Ho
Annual Conference of KIPS
/
2021.11a
/
pp.535-536
/
2021
빅데이터를 활용한 기계학습 모델을 개발하기 위해서는 빅데이터 처리를 위한 플랫폼과 딥러닝 프레임 워크 등 고급 분석을 수행할 수 있는 도구의 활용이 동시에 요구된다. 그러나 빅데이터 플랫폼과 딥러닝 프레임워크를 자유롭게 활용하기 위해서는 상당한 수준의 기술적 지식과 경험이 필요하다. 또한 빅데이터를 이용한 딥러닝 모델을 개발할 경우 분산처리와 병렬처리에 대한 지식과 추가적인 작업이 요구된다. 본 연구에서는 빅데이터를 활용한 기계학습 모형을 자유롭게 개발 및 공유하고 분산 딥러닝을 위한 시스템적 지원을 통해 분야별로 딥러닝 모형을 개발하는 응용 연구자들이 활용할 수 있는 플랫폼을 제시하였다. 본 연구를 통해 다양한 분야의 연구자들이 자신의 데이터를 이용하여 모형을 개발할 경우 분산처리와 병렬처리를 위한 기술적 제약을 극복하고 보다 빠르고 효율적인 방법으로 모형을 개발하고 현업에 활용할 수 있을 것으로 기대한다.
딥러닝은 선형 연산과 비선형 연산을 조합하여 목표로 하는 시스템을 잘 표현할 수 있는 함수를 찾기 위해 사용하며, 이미지 분류 및 생성, 거대 언어 모델 및 객체 인식의 영역에서 활발하게 사용되고 있다. 그러나 딥러닝 연산을 위해서는 모델과, 연산을 수행하고자 하는 데이터가 하나의 공간에 저장되어야 한다. 모델과 데이터를 데이터 소유자가 관리할 경우, 데이터 소유자가 모델 데이터의 프라이버시를 침해할 수 있으며, 이는 모델을 적대적 예제 생성 공격에 취약하도록 만드는 원인이 된다. 한편 모델과 데이터를 모델 소유자가 관리할 경우, 모델 소유자는 데이터의 프라이버시를 침해하여 데이터 소유자의 정보를 악의적으로 이용할 수 있다. 본 논문에서는 딥러닝 모델과 데이터의 프라이버시를 모두 보호하기 위해 주어진 딥러닝 모델의 암호화와 복호화를 수행하는 EncNet 을 구현하였으며, MNIST 와 Cifat-10 데이터셋에 대하여 실효성을 테스트하였다.
This paper proposes an image prediction system architecture for deep running in enterprise environment. Easily transform into an artificial intelligence platform for an enterprise environment, and allow sufficient deep-running services to be developed and modified even in Java-centric architectures to improve the shortcomings of Java-centric enterprise development because artificial intelligence platforms are concentrated in the pipeline. In addition, based on the proposed environment, we propose a more accurate prediction system in the deep running architecture environment that has been previously learned through image forecasting experiments. Experiments show 95.23% accuracy in the image example provided for deep running to be performed, and the proposed model shows 96.54% accuracy compared to other similar models.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.8
/
pp.1005-1012
/
2021
Recently, the use of various location-based services-based location information systems using maps on the web has been expanding, and there is a need for a monitoring system that can check power demand in real time as an alternative to energy saving. In this study, we developed a deep learning real-time virtual power demand prediction web system using open source-based mapping service to analyze and predict the characteristics of power demand data using deep learning. In particular, the proposed system uses the LSTM(Long Short-Term Memory) deep learning model to enable power demand and predictive analysis locally, and provides visualization of analyzed information. Future proposed systems will not only be utilized to identify and analyze the supply and demand and forecast status of energy by region, but also apply to other industrial energies.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.4
/
pp.29-33
/
2022
In this paper, we propose the deep learning based pre interference cancellation scheme algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information by applying a deep learning model at the transmitter. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.
디지털화된 현실 환경을 증강현실속에서 투영시키기 위해선 증강현실 디바이스의 측위가 필수적이다. 하지만 대부분의 측위 방식이 측위 대상 디바이스에 대해 별도의 하드웨어나 센서를 요구하는데 이를 스마트폰 환경에서 충족시키기란 매우 힘든 일이다. 이에 본 논문은 스마트폰 환경에서 별도의 하드웨어를 요구하지 않는 딥러닝 영상기반 실내 측위 시스템을 제안한다. 제안하는 시스템은 측위를 위하여 설계된 피라미드형의 비콘을 활용하며 실시간에 가까운 피드백을 구현하기 위해 딥러닝 기법을 활용한 탐지를 진행한다. 본 논문에서는 상기한 두 개의 요소를 포함한 제안 시스템의 구성요소들을 설명하고 학습 방법과 비콘의 자세 측정 방법, 최종 측위 프로세스 등 전반적인 측위 프로세스를 설명한다.
차량의 자율주행을 위해서 신호등의 검출은 매우 중요한 부분이며, 최근 딥러닝 기술이 자율주행 및 운전자 보조 시스템에 적용되고 있다. 본 논문에서는 객체 검출을 위한 잘 알려진 딥러닝 기법을 신호등 검출에 적용해 본다. 공개된 데이터셋을 이용하였으며 일반적인 컴퓨터 구성에서 실험하여 신호등 검출을 하였다.
오늘날 딥러닝은 교육을 포함한 다양한 분야에서 세상의 패러다임을 바꿀만큼 발전하고 있다. 그러나 딥러닝 모델이 어떤 지식을 습득하였는지 파악하기 어려워 딥러닝 시스템을 무조건적으로 신뢰할 수 없다는 것이 문제로 남아있다. 이 문제를 해결하기 위해 기존에 딥러닝이 학습한 결과를 If-then과 같은 형식의 규칙으로 추출하는 방법이 제안되었지만, 이러한 규칙은 사람이 이해하기에는 직관적이지 못하다는 단점을 가지고 있다. 본 논문에서는 이러한 문제를 해결하고자 딥러닝 모델이 습득한 지식을 규칙 형태로 추출하고 이를 시각화하여, 사람이 직관적으로 이해할 수 있는 형태로 표현하는 방법을 제시한다.
Park, Hyeong-Bin;Kim, So-Hee;Nam, Ji-Su;Cho, Yoon-Bin;Jun, Hee-Gook;Im, Dong-Hyuk
Annual Conference of KIPS
/
2022.05a
/
pp.602-605
/
2022
본 연구는 대량의 상권 데이터를 바탕으로 머신 러닝과 딥러닝 분석을 이용하여 최적의 상권 입지를 추천하는 시스템 개발을 목표로 한다. 자영업자들의 오프라인 창업에 있어 개개인의 매장 정보에 기반한 입지 조건 판단은 앞으로의 매출에 중요한 시작점이다. 따라서 상권 정보를 기반으로 미래 매출을 예측하여 최적의 상권 입지를 추천하는 기술이 필요하다. 이를 위해 기존에 선행된 다수의 회귀 기법과 더불어 강하게 편향된 데이터를 레이블링 하여 다중 분류 기법으로도 문제를 접근한다. 최종적으로 딥러닝 모델과 합성하여 더 높은 성능을 이끌어내고 이로부터 편향 데이터 처리 방법과 딥러닝 모델과의 앙상블 중요성에 대해 논의하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.