• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.034 seconds

Development of Deep Learning-Based House-Tree-Person Test Analysis Model (딥러닝 기반 집-나무-사람 검사 분석 모델의 개발)

  • Cho, Seung-Je;Cho, Geon-Woo;Kim, Young-wook
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.558-561
    • /
    • 2021
  • 심리학에서 사람의 심리 상태를 알아보기 위해 사용되는 검사 방법 중, 집-나무-사람 검사(HTP Test)는 피실험자가 그린 집, 나무, 사람을 포함하는 그림을 사용하여 피실험자의 심리를 분석하는 투영 검사법이다. 본 논문에서는 딥러닝 모델을 이용해 HTP Test 에 사용되는 그림을 분석하는 시스템을 제안하며, 성능 평가를 통해 심리학에서의 딥러닝 모델 적용 가능성을 확인한다. 또한 그림 데이터 분석에 적합한 사전 훈련 모델을 개발하기 위해, ImageNet 과 스케치 데이터셋으로 사전 훈련하여 성능을 비교한다. 본 논문에서 제안하는 시스템은 크게 감정 분석을 위한 이미지 객체 추출부, 추출된 객체로 피실험자의 감정을 분류하는 감정 분류부로 구성되어 있다. 객체 추출과 이미지 분류 모두 CNN(Convolution Neural Network) 기반의 딥러닝 모델을 사용하며, 이미지 분류 모델은 서로 다른 데이터셋으로 모델을 사전 훈련한 후, 훈련 데이터셋으로 전이 학습하여 모델의 성능을 비교한다. 그림 심리 분석을 위한 HTP test 스케치 데이터셋은, HTP Test 와 동일하게 피실험자가 3 개 클래스의 집, 나무, 사람의 그림을 그려 자체 수집하였다.

Comparison of deep learning-based autoencoders for recommender systems (오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구)

  • Lee, Hyo Jin;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.329-345
    • /
    • 2021
  • Recommender systems use data from customers to suggest personalized products. The recommender systems can be categorized into three cases; collaborative filtering, contents-based filtering, and hybrid recommender system that combines the first two filtering methods. In this work, we introduce and compare deep learning-based recommender system using autoencoder. Autoencoder is an unsupervised deep learning that can effective solve the problem of sparsity in the data matrix. Five versions of autoencoder-based deep learning models are compared via three real data sets. The first three methods are collaborative filtering and the others are hybrid methods. The data sets are composed of customers' ratings having integer values from one to five. The three data sets are sparse data matrix with many zeroes due to non-responses.

Development of parking lot recognition system using deep learning technology (딥러닝기법을 이용한 주차면 영상 인식 시스템 개발)

  • Yun, Tae-Jin;Kim, Hyun-seung;Chung, Yong-ju;Lee, Young-hun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.301-302
    • /
    • 2019
  • 본 연구에서는 주차장의 CCTV와 사용자의 스마트폰을 연동하여서 주차장의 전체적인 화면을 사용자의 스마트폰의 화면에 보여주며, YOLO 딥러닝 기법을 이용하여 주차된 차량 수를 산출하여서 전체적인 차량 댓수와 주차장소의 복잡도를 계산하여 사용자에게 제공하고자 한다. YOLO 딥러닝 기법은 CNN 기반으로 정확도 높은 객체 추출이 가능하고, 영역을 고려한 R-CNN 알고리즘을 사용하여 객체 분류에 필요한 경계 상자의 수를 줄일 수 있다. 한편, YOLO 딥러닝 기법을 이용하여 주차된 자동차를 인식하고, 주차면에 대한 영역에 대한 학습을 수행하여 주차된 자동차와 빈 주차면을 계산하여 제공한다. 주차장에 설치된 기존의 CCTV를 이용하여 저렴한 비용으로 딥러닝 기법을 CCTV 영상에 적용하여 주차장과 주차면 상황을 고객에게 실시간으로 알려주는 앱을 개발하였다.

  • PDF

Anomaly Detection System for Cloud Resources Using Representation Learning-Based Deep Learning Models (표현 학습 기반의 딥러닝 모델을 활용한 클라우드 자원 이상 감지 시스템)

  • Min-Yeong Lee;Heon-Chang Yu
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.658-661
    • /
    • 2024
  • 퍼블릭 클라우드 시장이 성장하면서 퍼블릭 클라우드에서 호스팅하는 컴퓨팅 자원으로 구축된 거대하고 복잡한 IT 시스템이 점차 많아지고 있다. 이러한 시스템의 증가는 서비스 장애 발생 확률을 높이므로, 장애 관리 및 선제 감지를 위한 퍼블릭 클라우드 자원의 이상 감지 연구에 대한 수요 또한 증가하고 있다. 그러나 연구에 활용할 수 있는 벤치마크 데이터셋이 없다는 점과, 실제 자원에서 추출할 수 있는 데이터는 레이블링이 되어 있지 않은 불균형 데이터라는 점 때문에 관련 연구가 부족한 상황이다. 이러한 문제를 해결하고자 본 논문은 비지도 방식의 표현 학습 기반 딥러닝 모델을 활용한 이상 감지 시스템을 제안한다. 시스템의 이상 감지 성능을 유지하고자 일정 주기마다 다수의 딥러닝 모델을 재학습하고 비교하여 최적의 모델로 업데이트 하는 방식을 고안하였다. 해당 시스템의 평가에는 실제 퍼블릭 클라우드 자원에서 발생한 메트릭 데이터가 활용됐으며, 그 결과 준수한 이상 감지 성능을 보인다는 것을 확인하였다.

Time Series Data Processing Deep Learning system for Prediction of Hospital Outpatient Number (병원 외래환자수의 예측을 위한 시계열 데이터처리 딥러닝 시스템)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.313-318
    • /
    • 2021
  • The advent of the Deep Learning has applied to many industrial and general applications having an impact on our lives these days. Certain type of machine learning model is needed to be designed for a specific problem of field. Recently, there are many instances to solve the various COVID-19 related problems using deep learning model. Therefore, in this paper, a deep learning model for predicting number of outpatients of a hospital in advance is suggested. The suggested deep learning model is designed by using the Keras in Jupyter Notebook. The prediction result is being analyzed with the real data in graph, as well as the loss rate with some validation data to verify either for the underfitting or the overfitting.

Development of monitoring system for detecting illegal dumping using deep learning (딥러닝 영상인식을 이용한 쓰레기 무단투기 단속 시스템 개발)

  • Bae, Chang-hui;Kim, Hyeong-jun;Yeo, Jeong-hun;Jeong, Ji-hun;Yun, Tae-jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.287-288
    • /
    • 2020
  • 우리나라의 무단 투기된 쓰레기양은 2019년 2월 기준 33만 톤이며 이를 단속하기 위해 상용화된 쓰레기 무단투기 단속 시스템은 센서를 이용하여 시스템 주변에 사람이 지나가면 영상을 촬영하기 때문에 쓰레기 무단투기자 뿐 아니라 해당 시스템 주변을 지나는 모든 사람을 촬영하기 때문에 불법 쓰레기를 배출하는지 해당 영상을 사람이 일일이 다시 분석해야한다. 본 논문에서는 쓰레기 투기 행위 이미지를 바탕으로 학습시킨 딥러닝 실시간 객체인식 알고리즘인 YOLO-v4를 활용하여 실시간으로 쓰레기 무단투기를 단속하는 시스템을 제시한다.

  • PDF

Development of Recognition System for Traffic Violations Using Deep Learning Algorithms (딥러닝 상황 인식을 이용한 교통법규 위반 인식 시스템 개발)

  • Kim, Joong-wan;Jo, Hyun-jun;Choi, Jong-geon;Yun, Tae-jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.319-320
    • /
    • 2022
  • 교통량이 증가됨에 따라 높아지는 사고율을 줄이기 위해 효율적이며, 다양한 교통 위반 단속이 요구되고 있다. 기존의 유무인 교통법규 위반 단속 시스템의 도입으로 단속 구역 확대를 시도하고 있으나 높은 비용의 문제로 한정된 지역에서만 실시되고 있다. 해당 문제 해결을 위해 본 논문에서는 딥러닝 실시간 객체인식기술을 적용하여 차량의 교통법규 위반을 인식하며 이에 대한 정보를 제공하는 시스템을 개발하였다. 실시간 객체인식 알고리즘인 YOLOv4와 실시간 객체추적기술인 deepSORT 알고리즘을 데스크톱 PC에 적용하여 구현하였다. 개발한 시스템은 과속, 버스 전용 차로, 주정차, 급속 다차선 변경에 대한 인식 결과를 제공한다. 기존 설치된 CCTV 영상을 대상으로 시스템 적용이 가능하여 저비용으로 넓은 지역에 대한 교통법규 위반 상황 인식을 기대할 수 있다.

  • PDF

Implementation of An Unmanned Counter based on YOLO Deep Learning Object Recognition (YOLO 기반 딥러닝 객체 인식 무인계산대 개발에 관한 연구)

  • Park, Tae-Baek
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.776-778
    • /
    • 2022
  • 우리는 일상 속에서 다양한 결제시스템을 접할 수 있다. 그중 무인계산 시스템은 소비자가 구매부터 결제까지 스스로 하는 방식이다. 발전된 기술이 편리함을 제공하지만, 일부 소비자들은 오히려 사용에 어려움을 겪고 사람이 계산을 해주는 기존의 시스템을 선호하는 경우가 많다. 본 논문에서는 소형 IOT 기기와 딥러닝 객체 인식 시스템을 기반으로 한 무인계산대를 설계하고 개발하였다. 계산대의 모습을 구현하기 위해 아두이노 컨베이어 벨트를 이용하고 라즈베리 파이와 파이 카메라를 이용하여 객체 인식 환경을 구현하였다. 파이 카메라를 통해 영상을 인식하고 해당 영상을 실시간으로 전송하여 PC에서 YOLO를 통해 객체를 탐지한다. 이후 탐지된 객체는 소비자가 확인할 수 있도록 디스플레이에 시각화한다. 본 논문에서 제안한 딥러닝 객체 인식 무인계산 시스템은 공산품이 주를 이루는 무인 상점에 활용할 수 있다.

Development of exercise posture training system using deep learning for human posture recognition (인체 자세 인식 딥러닝을 이용한 운동 자세 훈련 시스템 개발)

  • Jang, Jae-Ho;Jee, Jun-Hwan;Kim, Du-Hwan;Choi, Min-Gi;Yun, Tae-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.289-290
    • /
    • 2020
  • 본 논문에서는 오픈 소스인 openpose skeleton tracking 기술을 이용하여 특정 운동 동작을 영상처리 기술과 딥러닝 기술로 인체 자세에 대해서 인지와 상황 판단하여 운동 동작에 대한 인식 결과를 도출할 수 있다. 먼저 입력받은 영상을 전달받아서 딥러닝 인식 시스템를 통해 인식 결과을 추출한 뒤 비교, 분석한 후에 사전 등록된 운동 동작 명칭으로 화면에 표시하여 이용자가 정확한 동작을 취할 수 있도록 지도하는 데 활용할 수 있다. 또한, 이 기술은 행동 인식부터 얼굴 인식, 손동작 인식 등에 다양하게 활용할 수 있다.

  • PDF

PEEP-Talk: Deep Learning-based English Education Platform for Personalized Foreign Language Learning (PEEP-Talk: 개인화 외국어 학습을 위한 딥러닝 기반 영어 교육 플랫폼)

  • Lee, SeungJun;Jang, Yoonna;Park, Chanjun;Kim, Minwoo;Yahya, Bernardo N;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.293-299
    • /
    • 2021
  • 본 논문은 외국어 학습을 위한 딥러닝 기반 영어 교육 플랫폼인 PEEP-Talk (Personalized English Education Platform)을 제안한다. PEEP-Talk는 딥러닝 기반 페르소나 대화 시스템과 영어 문법 교정 피드백 기능이 내장된 교육용 플랫폼이다. 또한 기존 페르소나 대화시스템과 다르게 대화의 흐름이 벗어날 시 이를 자동으로 판단하여 대화 주제를 실시간으로 변경할 수 있는 CD (Context Detector) 모듈을 제안하며 이를 적용하여 실제 사람과 대화하는 듯한 느낌을 사용자에게 줄 수 있다. 본 논문은 PEEP-Talk의 각 모듈에 대한 정량적인 분석과 더불어 CD 모듈을 객관적으로 판단할 수 있는 새로운 성능 평가지표인 CDM (Context Detector Metric)을 기반으로 PEEP-Talk의 강건함을 검증하였다. 이와 더불어 PEEP-Talk를 카카오톡 채널을 이용하여 배포하였다.

  • PDF