• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.03 seconds

AutoML and Artificial Neural Network Modeling of Process Dynamics of LNG Regasification Using Seawater (해수 이용 LNG 재기화 공정의 딥러닝과 AutoML을 이용한 동적모델링)

  • Shin, Yongbeom;Yoo, Sangwoo;Kwak, Dongho;Lee, Nagyeong;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • First principle-based modeling studies have been performed to improve the heat exchange efficiency of ORV and optimize operation, but the heat transfer coefficient of ORV is an irregular system according to time and location, and it undergoes a complex modeling process. In this study, FNN, LSTM, and AutoML-based modeling were performed to confirm the effectiveness of data-based modeling for complex systems. The prediction accuracy indicated high performance in the order of LSTM > AutoML > FNN in MSE. The performance of AutoML, an automatic design method for machine learning models, was superior to developed FNN, and the total time required for model development was 1/15 compared to LSTM, showing the possibility of using AutoML. The prediction of NG and seawater discharged temperatures using LSTM and AutoML showed an error of less than 0.5K. Using the predictive model, real-time optimization of the amount of LNG vaporized that can be processed using ORV in winter is performed, confirming that up to 23.5% of LNG can be additionally processed, and an ORV optimal operation guideline based on the developed dynamic prediction model was presented.

Utilization of UAV and GIS for Efficient Agricultural Area Survey (효율적인 농업면적 조사를 위한 무인항공기와 GIS의 활용)

  • Jeong, Woo-Chul;Kim, Sung-Bo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.201-207
    • /
    • 2020
  • In this study, the practicality of unmanned aerial vehicle photography information was identified. Therefore, a total of four consecutive surveys were conducted on the field-level survey areas among the areas subject to photography using unmanned aerial vehicles, and the changes in crop conditions were analyzed using pictures of unmanned aerial vehicles taken during each survey. It is appropriate to collect and utilize photographic information by directly taking pictures of the survey area according to the time of the on-site survey using unmanned aerial vehicles in the field layer, which is an area where many changes in topography, crop vegetation, and crop types are expected. And it turned out that it was appropriate to utilize satellite images in consideration of economic and efficient aspects in relatively unchanged rice paddies and facilities. If the survey area is well equipped with systems for crop cultivation, deep learning can be utilized in real time by utilizing libraries after obtaining photographic data for a certain area using unmanned aircraft in the future. Through this process, it is believed that it can be used to analyze the overall crop and shipment volume by identifying the crop status and surveying the quantity per unit area.

Analysis of Rice Blast Outbreaks in Korea through Text Mining (텍스트 마이닝을 통한 우리나라의 벼 도열병 발생 개황 분석)

  • Song, Sungmin;Chung, Hyunjung;Kim, Kwang-Hyung;Kim, Ki-Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.113-121
    • /
    • 2022
  • Rice blast is a major plant disease that occurs worldwide and significantly reduces rice yields. Rice blast disease occurs periodically in Korea, causing significant socio-economic damage due to the unique status of rice as a major staple crop. A disease outbreak prediction system is required for preventing rice blast disease. Epidemiological investigations of disease outbreaks can aid in decision-making for plant disease management. Currently, plant disease prediction and epidemiological investigations are mainly based on quantitatively measurable, structured data such as crop growth and damage, weather, and other environmental factors. On the other hand, text data related to the occurrence of plant diseases are accumulated along with the structured data. However, epidemiological investigations using these unstructured data have not been conducted. The useful information extracted using unstructured data can be used for more effective plant disease management. This study analyzed news articles related to the rice blast disease through text mining to investigate the years and provinces where rice blast disease occurred most in Korea. Moreover, the average temperature, total precipitation, sunshine hours, and supplied rice varieties in the regions were also analyzed. Through these data, it was estimated that the primary causes of the nationwide outbreak in 2020 and the major outbreak in Jeonbuk region in 2021 were meteorological factors. These results obtained through text mining can be combined with deep learning technology to be used as a tool to investigate the epidemiology of rice blast disease in the future.

Human Tracking Technology using Convolutional Neural Network in Visual Surveillance (서베일런스에서 회선 신경망 기술을 이용한 사람 추적 기법)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.173-181
    • /
    • 2017
  • In this paper, we have studied tracking as a training stage of considering the position and the scale of a person given its previous position, scale, as well as next and forward image fraction. Unlike other learning methods, CNN is thereby learning combines both time and spatial features from the image for the two consecutive frames. We introduce multiple path ways in CNN to better fuse local and global information. A creative shift-variant CNN architecture is designed so as to alleviate the drift problem when the distracting objects are similar to the target in cluttered environment. Furthermore, we employ CNNs to estimate the scale through the accurate localization of some key points. These techniques are object-independent so that the proposed method can be applied to track other types of object. The capability of the tracker of handling complex situations is demonstrated in many testing sequences. The accuracy of the SVM classifier using the features learnt by the CNN is equivalent to the accuracy of the CNN. This fact confirms the importance of automatically optimized features. However, the computation time for the classification of a person using the convolutional neural network classifier is less than approximately 1/40 of the SVM computation time, regardless of the type of the used features.

Study on Q-value prediction ahead of tunnel excavation face using recurrent neural network (순환인공신경망을 활용한 터널굴착면 전방 Q값 예측에 관한 연구)

  • Hong, Chang-Ho;Kim, Jin;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.239-248
    • /
    • 2020
  • Exact rock classification helps suitable support patterns to be installed. Face mapping is usually conducted to classify the rock mass using RMR (Rock Mass Ration) or Q values. There have been several attempts to predict the grade of rock mass using mechanical data of jumbo drills or probe drills and photographs of excavation surfaces by using deep learning. However, they took long time, or had a limitation that it is impossible to grasp the rock grade in ahead of the tunnel surface. In this study, a method to predict the Q value ahead of excavation surface is developed using recurrent neural network (RNN) technique and it is compared with the Q values from face mapping for verification. Among Q values from over 4,600 tunnel faces, 70% of data was used for learning, and the rests were used for verification. Repeated learnings were performed in different number of learning and number of previous excavation surfaces utilized for learning. The coincidence between the predicted and actual Q values was compared with the root mean square error (RMSE). RMSE value from 600 times repeated learning with 2 prior excavation faces gives a lowest values. The results from this study can vary with the input data sets, the results can help to understand how the past ground conditions affect the future ground conditions and to predict the Q value ahead of the tunnel excavation face.

A Study on the Build of Equipment Predictive Maintenance Solutions Based on On-device Edge Computer

  • Lee, Yong-Hwan;Suh, Jin-Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.165-172
    • /
    • 2020
  • In this paper we propose an uses on-device-based edge computing technology and big data analysis methods through the use of on-device-based edge computing technology and analysis of big data, which are distributed computing paradigms that introduce computations and storage devices where necessary to solve problems such as transmission delays that occur when data is transmitted to central centers and processed in current general smart factories. However, even if edge computing-based technology is applied in practice, the increase in devices on the network edge will result in large amounts of data being transferred to the data center, resulting in the network band reaching its limits, which, despite the improvement of network technology, does not guarantee acceptable transfer speeds and response times, which are critical requirements for many applications. It provides the basis for developing into an AI-based facility prediction conservation analysis tool that can apply deep learning suitable for big data in the future by supporting intelligent facility management that can support productivity growth through research that can be applied to the field of facility preservation and smart factory industry with integrated hardware technology that can accommodate these requirements and factory management and control technology.

Development of a method for urban flooding detection using unstructured data and deep learing (비정형 데이터와 딥러닝을 활용한 내수침수 탐지기술 개발)

  • Lee, Haneul;Kim, Hung Soo;Kim, Soojun;Kim, Donghyun;Kim, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1233-1242
    • /
    • 2021
  • In this study, a model was developed to determine whether flooding occurred using image data, which is unstructured data. CNN-based VGG16 and VGG19 were used to develop the flood classification model. In order to develop a model, images of flooded and non-flooded images were collected using web crawling method. Since the data collected using the web crawling method contains noise data, data irrelevant to this study was primarily deleted, and secondly, the image size was changed to 224×224 for model application. In addition, image augmentation was performed by changing the angle of the image for diversity of image. Finally, learning was performed using 2,500 images of flooding and 2,500 images of non-flooding. As a result of model evaluation, the average classification performance of the model was found to be 97%. In the future, if the model developed through the results of this study is mounted on the CCTV control center system, it is judged that the respons against flood damage can be done quickly.

Blockchain Based Financial Portfolio Management Using A3C (A3C를 활용한 블록체인 기반 금융 자산 포트폴리오 관리)

  • Kim, Ju-Bong;Heo, Joo-Seong;Lim, Hyun-Kyo;Kwon, Do-Hyung;Han, Youn-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.1
    • /
    • pp.17-28
    • /
    • 2019
  • In the financial investment management strategy, the distributed investment selecting and combining various financial assets is called portfolio management theory. In recent years, the blockchain based financial assets, such as cryptocurrencies, have been traded on several well-known exchanges, and an efficient portfolio management approach is required in order for investors to steadily raise their return on investment in cryptocurrencies. On the other hand, deep learning has shown remarkable results in various fields, and research on application of deep reinforcement learning algorithm to portfolio management has begun. In this paper, we propose an efficient financial portfolio investment management method based on Asynchronous Advantage Actor-Critic (A3C), which is a representative asynchronous reinforcement learning algorithm. In addition, since the conventional cross-entropy function can not be applied to portfolio management, we propose a proper method where the existing cross-entropy is modified to fit the portfolio investment method. Finally, we compare the proposed A3C model with the existing reinforcement learning based cryptography portfolio investment algorithm, and prove that the performance of the proposed A3C model is better than the existing one.

A Study on Similar Trademark Search Model Using Convolutional Neural Networks (합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 유사상표 검색 모형 개발)

  • Yoon, Jae-Woong;Lee, Suk-Jun;Song, Chil-Yong;Kim, Yeon-Sik;Jung, Mi-Young;Jeong, Sang-Il
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.55-80
    • /
    • 2019
  • Recently, many companies improving their management performance by building a powerful brand value which is recognized for trademark rights. However, as growing up the size of online commerce market, the infringement of trademark rights is increasing. According to various studies and reports, cases of foreign and domestic companies infringing on their trademark rights are increased. As the manpower and the cost required for the protection of trademark are enormous, small and medium enterprises(SMEs) could not conduct preliminary investigations to protect their trademark rights. Besides, due to the trademark image search service does not exist, many domestic companies have a problem that investigating huge amounts of trademarks manually when conducting preliminary investigations to protect their rights of trademark. Therefore, we develop an intelligent similar trademark search model to reduce the manpower and cost for preliminary investigation. To measure the performance of the model which is developed in this study, test data selected by intellectual property experts was used, and the performance of ResNet V1 101 was the highest. The significance of this study is as follows. The experimental results empirically demonstrate that the image classification algorithm shows high performance not only object recognition but also image retrieval. Since the model that developed in this study was learned through actual trademark image data, it is expected that it can be applied in the real industrial environment.

Real-time Steel Surface Defects Detection Appliocation based on Yolov4 Model and Transfer Learning (Yolov4와 전이학습을 기반으로한 실시간 철강 표면 결함 검출 연구)

  • Bok-Kyeong Kim;Jun-Hee Bae;NGUYEN VIET HOAN;Yong-Eun Lee;Young Seok Ock
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.31-41
    • /
    • 2022
  • Steel is one of the most fundamental components to mechanical industry. However, the quality of products are greatly impacted by the surface defects in the steel. Thus, researchers pay attention to the need for surface defects detector and the deep learning methods are the current trend of object detector. There are still limitations and rooms for improvements, for example, related works focus on developing the models but don't take into account real-time application with practical implication on industrial settings. In this paper, a real-time application of steel surface defects detection based on YOLOv4 is proposed. Firstly, as the aim of this work to deploying model on real-time application, we studied related works on this field, particularly focusing on one-stage detector and YOLO algorithm, which is one of the most famous algorithm for real-time object detectors. Secondly, using pre-trained Yolov4-Darknet platform models and transfer learning, we trained and test on the hot rolled steel defects open-source dataset NEU-DET. In our study, we applied our application with 4 types of typical defects of a steel surface, namely patches, pitted surface, inclusion and scratches. Thirdly, we evaluated YOLOv4 trained model real-time performance to deploying our system with accuracy of 87.1 % mAP@0.5 and over 60 fps with GPU processing.