• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.026 seconds

A Blockchain Based Reward Model for Co-translation (블록체인 기술을 활용한 보상형 공동 번역 모델)

  • Ku, Bon Cheol;Nam, Young Woo;Kim, Seung Soo;Lee, Keon Myung
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.598-601
    • /
    • 2019
  • 최근 딥러닝과 신경망 기술을 바탕으로 한 다양한 번역 시스템이 상용화되고 있다. 그러나 문맥을 고려해야하는 경우나 의료, 법학 등 전문적인 지식을 요구하는 경우, 기존의 번역 시스템으로는 원문 작성자가 의도한 대로 자연스러운 번역 결과물을 얻기 어려운 문제점이 있다. 이로 인해 전문적인 지식을 요구하는 문서는 전문 번역 기관에 의뢰하여 번역이 이루어지고 있으며 소비자의 입장에서는 업체로부터 받은 번역물을 평가 과정 없이 사용할 수밖에 없는 상황이다. 따라서 본 논문에서는 사람이 직접 번역한 결과물을 사용자가 가진 번역 신뢰 점수를 반영하여 평가함으로써 양질의 결과물을 도출하고 번역 활동 기여도에 따라 암호화폐로 보상금을 지급하는 블록체인 기반 보상형 공동 번역 모델을 제안한다. 다수의 번역 평가자들로부터 높은 점수를 받은 우수한 번역 결과물을 도출하고, 번역글 평가에 사용되는 사용자별 신뢰도 점수를 블록체인에 저장하여 조작을 방지함으로써 믿을 수 있는 번역 생태계를 조성할 것으로 기대한다.

A study on estimating the main dimensions of a small fishing boat using deep learning (딥러닝을 이용한 연안 소형 어선 주요 치수 추정 연구)

  • JANG, Min Sung;KIM, Dong-Joon;ZHAO, Yang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.272-280
    • /
    • 2022
  • The first step is to determine the principal dimensions of the design ship, such as length between perpendiculars, beam, draft and depth when accomplishing the design of a new vessel. To make this process easier, a database with a large amount of existing ship data and a regression analysis technique are needed. Recently, deep learning, a branch of artificial intelligence (AI) has been used in regression analysis. In this paper, deep learning neural networks are used for regression analysis to find the regression function between the input and output data. To find the neural network structure with the highest accuracy, the errors of neural network structures with varying the number of the layers and the nodes are compared. In this paper, Python TensorFlow Keras API and MATLAB Deep Learning Toolbox are used to build deep learning neural networks. Constructed DNN (deep neural networks) makes helpful in determining the principal dimension of the ship and saves much time in the ship design process.

Communication Structure for Smart Railway Network (스마트 철도 네트워크를 위한 통신 구조)

  • Kim, Young-dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.197-199
    • /
    • 2021
  • High speed railway system is progressed to SRN(Smart Railway Network) having entirely automation function beyond each componet automations. It is necessity to use mobile communication technology of LTE-R(Long Term Evolution - Railway) and 5G-R(5th Generation - Railway) and information technology of convergence based on AI, Big Data, Deep Learning to construct this smart railway networks. In this paper, a communication structure is suggested for SRN. This suggested communication structure for SRN is composed to include safety operation of high speed train, railway system management and customer services, and also have complexing function of these each functions. Results of this study can be used for SRN construction and opeation, and development of railway communication standards.

  • PDF

Prediction of KBO playoff Using the Deep Neural Network (DNN을 활용한 'KBO' 플레이오프진출 팀 예측)

  • Ju-Hyeok Park;Yang-Jae Lee;Hee-Chang Han;Yoo-Lim Jun;Yoo-Jin Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.315-316
    • /
    • 2023
  • 본 논문에서는 딥러닝을 활용하여 KBO (Korea Baseball Organization)의 다음 시즌 플레이오프 진출 확률을 예측하는 Deep Neural Network (DNN) 시스템을 설계하고 구현하는 방법을 제안한다. 연구 방법으로 KBO 각 시즌별 데이터를 1999년도 데이터부터 수집하여 분석한 결과, 각 시즌 데이터 중 경기당 평균 득점, 타자 OPS, 투수 WHIP 등이 시즌 결과에 유의미한 영향을 끼치는 것을 확인하였다. 모델 설계는 linear, softmax 함수를 사용하는 것보다 relu, tanh, sigmoid 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 2022 시즌 결과를 예측한 결과 88%의 정확도를 도출했다. 폭투의 수, 피홈런 등 가중치가 높은 변수의 값이 우수할 경우 시즌 결과가 좋게 나온다는 것이 증명되었다. 본 논문에서 설계한 이 시스템은 KBO 구단만이 아닌 모든 야구단에서 선수단을 구성하는데 활용 가능하다고 사료된다.

  • PDF

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

A Study on Deep Learning-based Pedestrian Detection and Alarm System (딥러닝 기반의 보행자 탐지 및 경보 시스템 연구)

  • Kim, Jeong-Hwan;Shin, Yong-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.58-70
    • /
    • 2019
  • In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

Real data-based active sonar signal synthesis method (실데이터 기반 능동 소나 신호 합성 방법론)

  • Yunsu Kim;Juho Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • The importance of active sonar systems is emerging due to the quietness of underwater targets and the increase in ambient noise due to the increase in maritime traffic. However, the low signal-to-noise ratio of the echo signal due to multipath propagation of the signal, various clutter, ambient noise and reverberation makes it difficult to identify underwater targets using active sonar. Attempts have been made to apply data-based methods such as machine learning or deep learning to improve the performance of underwater target recognition systems, but it is difficult to collect enough data for training due to the nature of sonar datasets. Methods based on mathematical modeling have been mainly used to compensate for insufficient active sonar data. However, methodologies based on mathematical modeling have limitations in accurately simulating complex underwater phenomena. Therefore, in this paper, we propose a sonar signal synthesis method based on a deep neural network. In order to apply the neural network model to the field of sonar signal synthesis, the proposed method appropriately corrects the attention-based encoder and decoder to the sonar signal, which is the main module of the Tacotron model mainly used in the field of speech synthesis. It is possible to synthesize a signal more similar to the actual signal by training the proposed model using the dataset collected by arranging a simulated target in an actual marine environment. In order to verify the performance of the proposed method, Perceptual evaluation of audio quality test was conducted and within score difference -2.3 was shown compared to actual signal in a total of four different environments. These results prove that the active sonar signal generated by the proposed method approximates the actual signal.

A Korean speech recognition based on conformer (콘포머 기반 한국어 음성인식)

  • Koo, Myoung-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.488-495
    • /
    • 2021
  • We propose a speech recognition system based on conformer. Conformer is known to be convolution-augmented transformer, which combines transfer model for capturing global information with Convolution Neural Network (CNN) for exploiting local feature effectively. The baseline system is developed to be a transfer-based speech recognition using Long Short-Term Memory (LSTM)-based language model. The proposed system is a system which uses conformer instead of transformer with transformer-based language model. When Electronics and Telecommunications Research Institute (ETRI) speech corpus in AI-Hub is used for our evaluation, the proposed system yields 5.7 % of Character Error Rate (CER) while the baseline system results in 11.8 % of CER. Even though speech corpus is extended into other domain of AI-hub such as NHNdiguest speech corpus, the proposed system makes a robust performance for two domains. Throughout those experiments, we can prove a validation of the proposed system.

Evaluation of Criteria for Mapping Characters Using an Automated Hangul Font Generation System based on Deep Learning (딥러닝 학습을 이용한 한글 글꼴 자동 제작 시스템에서 글자 쌍의 매핑 기준 평가)

  • Jeon, Ja-Yeon;Ji, Young-Seo;Park, Dong-Yeon;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.850-861
    • /
    • 2020
  • Hangul is a language that is composed of initial, medial, and final syllables. It has 11,172 characters. For this reason, the current method of designing all the characters by hand is very expensive and time-consuming. In order to solve the problem, this paper proposes an automatic Hangul font generation system and evaluates the standards for mapping Hangul characters to produce an effective automated Hangul font generation system. The system was implemented using character generation engine based on deep learning CycleGAN. In order to evaluate the criteria when mapping characters in pairs, each criterion was designed based on Hangul structure and character shape, and the quality of the generated characters was evaluated. As a result of the evaluation, the standards designed based on the Hangul structure did not affect the quality of the automated Hangul font generation system. On the other hand, when tried with similar characters, the standards made based on the shape of Hangul characters produced better quality characters than when tried with less similar characters. As a result, it is better to generate automated Hangul font by designing a learning method based on mapping characters in pairs that have similar character shapes.