Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.475-476
/
2022
본 논문에서는 청각장애인의 사회참여성 증진 및 사회적 차별감소를 목적으로 딥러닝 영상인식 기반으로 MediaPipe 기술을 활용한 수화-텍스트 번역시스템을 설계한다. 제시하는 시스템은 실시간으로 수집된 수화 사용자의 영상정보를 통해 동작과 표정을 인식하여 텍스트로 번역함으로써 장애인과 비장애인의 원활한 의사소통 서비스를 제공하는 것을 주 목적으로한다. 향후 개선된 수화 인식 및 문장 조합을 통해 일상에서 청각장애인과 일반인의 자유로운 커뮤니케이션을 제공하는 서비스로 확장하고자한다.
Kim, Joong-wan;Jo, Hyun-jun;Hwang, Bo-ouk;Jeong, Jun-ho;Choi, Jong-geon;Yun, Tae-jin
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.479-480
/
2022
고속으로 차량이 주행하는 도로에서 정지 차량이나 낙하물은 큰 사고를 유발하기에 이에 대한 대처 방안이 요구되고 있다. 갑작스런 정지 차량의 경우 예상 불가능하며, 낙하물은 순찰대를 편성하여 주기적으로 수거하고 있으나 즉각적인 대응이 어렵다. 해당 문제 해결을 위해 본 논문에서는 딥러닝 실시간 객체인식기술을 적용하여 정지 차량 및 도로 위 낙하물을 인식하며 이에 대한 정보를 제공하는 시스템을 개발하였다. 실시간 객체인식 알고리즘인 YOLOX와 실시간 객체추적기술인 deepSORT 알고리즘을 데스크톱 PC에 적용하여 구현하였다. 개발한 시스템은 정지 차량 및 낙하물에 대한 인식 결과를 제공한다. 기존 설치된 CCTV 영상을 대상으로 시스템 적용이 가능하여 저비용으로 넓은 지역에 대한 도로 위험 상황 인식을 기대할 수 있다.
라벨인식과 같은 광학 문자 인식은 영상처리를 활용한 컴퓨터 비전의 대표적인 연구분야이다. 본 연구에서는 딥러닝 기반의 라벨인식 시스템을 고안하였다, 생산 라인에 적용되는 라벨인식 시스템은 인식 속도가 중요하기 때문에 기존의 R-CNN기반의 딥러닝 신경망보다 월등히 빠른 오브젝트 검출 시스템 YOLO를 활용하여 문자를 학습 및 인식 시스템을 개발하였다. 본 시스템은 기존 시스템에 근접하는 문자인식 정확도를 제공하고 자동으로 문자영역을 검출 가능하며, 라벨의 인쇄불량을 판독하도록 하였다. 또한 개발, 배포, 적용이 한번에 가능한 프레임워크를 통하여 생산현장에서 발생하는 다양한 이미지 처리에 활용될 전망이다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.613-617
/
2021
According to the growth of the service industry, stresses from emotional labor workers have been emerging as a social problem, thereby so-called the Emotional Labor Protection Act was implemented in 2018. However, insufficient substantial protection systems for emotional workers emphasizes the necessity of a digital stress management system. Thus, in this paper, we suggest a stress detection system for customer service representatives based on deep learning facial expression recognition. This system consists of a real-time face detection module, an emotion classification FER module that deep-learned big data including Korean emotion images, and a monitoring module that only visualizes stress levels. We designed the system to aim to monitor stress and prevent mental illness in emotional workers.
Jo, In-Ryeong;Kim, Hyun-jung;Yoo, Sang-hyun;Won, il-young
Annual Conference of KIPS
/
2017.11a
/
pp.63-65
/
2017
딥 러닝은 하드웨어의 발전과 데이터 양의 비약적 증가에 힘입어 여러 분야에서 좋은 결과를 보여 주고 있다. 본 연구는 딥 러닝의 많은 시간을 소모하는 학습단계에서 고가의 하드웨어가 아닌 저 사양의 장비를 여러 대 결합한 분산 러닝 시스템에 대한 것이다. 분산 학습 알고리즘의 핵심을 PSO를 응용한 구조이며, 제안한 시스템의 성능은 실험으로 검증하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.8
/
pp.1026-1031
/
2021
With the development of global automotive technology and the expansion of market size, demand for vehicles is increasing, which is leading to a decrease in the number of passengers on the road and an increase in the number of vehicles on the road. This causes traffic jams, and in order to solve these problems, the number of illegal vehicles continues to increase. Various technologies are being studied to crack down on these illegal activities. Previously developed systems use trigger equipment to recognize vehicles and photograph vehicles using infrared cameras to detect the number of passengers on board. In this paper, we propose a vehicle occupant detection system with deep learning model techniques without exploiting existing system-applied trigger equipment. The proposed technique proposes a system to detect vehicles by establishing triggers within images and to apply deep learning object recognition models to detect real-time boarding personnel.
Ji, HongGeun;Kim, Jina;Hwang, Syjung;Kim, Dogun;Park, Eunil;Kim, Young Seok;Ryu, Seung Ki
KIPS Transactions on Software and Data Engineering
/
v.10
no.5
/
pp.161-168
/
2021
Cracks affect the robustness of infrastructures such as buildings, bridge, pavement, and pipelines. This paper presents an automated crack detection system which detect cracks in diverse surfaces. We first constructed the combined crack dataset, consists of multiple crack datasets in diverse domains presented in prior studies. Then, state-of-the-art deep learning models in computer vision tasks including VGG, ResNet, WideResNet, ResNeXt, DenseNet, and EfficientNet, were used to validate the performance of crack detection. We divided the combined dataset into train (80%) and test set (20%) to evaluate the employed models. DenseNet121 showed the highest accuracy at 96.20% with relatively low number of parameters compared to other models. Based on the validation procedures of the advanced deep learning models in crack detection task, we shed light on the cost-effective automated crack detection system which can be applied to different surfaces and structures with low computing resources.
Kim, Tae hong;Yeo, Gil Su;Jeong, Se Jun;Yu, Yun Seop
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.388-390
/
2021
This paper introduces a system that can help visually impaired people to board a bus using an embedded board with keypad, dot matrix, lidar sensor, NFC reader, a public data portal Open API system, and deep learning algorithm (YOLOv5). The user inputs the desired bus number through the NFC reader and keypad, and then obtains the location and expected arrival time information of the bus through the Open API real-time data through the voice output entered into the system. In addition, by displaying the bus number as the dot matrix, it can help the bus driver to wait for the visually impaired, and at the same time, a deep learning algorithm (YOLOv5) recognizes the bus number that stops in real time and detects the distance to the bus with a distance detection sensor such as lidar sensor.
Journal of the Korea Society of Computer and Information
/
v.27
no.8
/
pp.61-68
/
2022
In this paper, we propose a system to predict the GPS trajectory of a pedestrian based on a deep learning model. Pedestrian trajectory prediction is a study that can prevent pedestrian danger and collision situations through notifications, and has an impact on business such as various marketing. In addition, it can be used not only for pedestrians but also for path prediction of unmanned transportation, which is receiving a lot of spotlight. Among various trajectory prediction methods, this paper is a study of trajectory prediction using GPS data. It is a deep learning model-based study that predicts the next route by learning the GPS trajectory of pedestrians, which is time series data. In this paper, we presented a data set construction method that allows the deep learning model to learn the GPS route of pedestrians, and proposes a trajectory prediction deep learning model that does not have large restrictions on the prediction range. The parameters suitable for the trajectory prediction deep learning model of this study are presented, and the model's test performance are presented.
Journal of Korea Society of Industrial Information Systems
/
v.24
no.1
/
pp.23-30
/
2019
As deep learning with the network-based algorithms evolve, artificial intelligence is rapidly growing around the world. Among them, finance is expected to be the field where artificial intelligence is most used, and many studies have been done recently. The existing financial strategy using deep-run is vulnerable to volatility because it focuses on stock price forecasts for a single stock. Therefore, this study proposes to construct ETF products constructed through portfolio methods by calculating the stocks constituting funds by using deep learning. We analyze the performance of the proposed model in the KOSPI 100 index. Experimental results showed that the proposed model showed improved results in terms of returns or volatility.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.