• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.033 seconds

A Research to realize a smart logistics warehouse system using 5G-based Logistics Automation Robot (5G 기반 물류 자동화 로봇을 활용한 스마트 물류 창고 시스템 구현을 위한 연구)

  • Park, Tae-uk;Yoon, Mahn-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.532-534
    • /
    • 2022
  • At a time when the 5G era is advancing beyond commercialization, places that used to handle simple logistics warehouse tasks are transforming into smart logistics warehouses by combining IT convergence technology and platforms. Smart logistics warehouses can accurately predict demand and inventory of products with AI, deep learning, and robot technologies based on 5G, and provide information on warehousing and warehousing status in real time. As the e-commerce market grows, the smart logistics sector is also growing rapidly. This paper implements a smart logistics warehouse system and studies and proposes a method of establishing a fast and accurate logistics system by utilizing 5G-based Logistics Automation Robot.

  • PDF

Analysis of detection rate according to the artificial dataset construction system and object arrangement structure (인조 데이터셋 구축 시스템과 오브젝트 배치 구조에 따른 검출률 분석)

  • Kim, Sang-Joon;Lee, Yu-Jin;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.74-77
    • /
    • 2021
  • 최근 딥러닝을 이용하여 객체 인식 학습을 위한 데이터셋을 구축하는데 있어 시간과 인력을 단축하기 위해 인조 데이터를 생성하는 연구가 진행되고 있다. 하지만 실제 환경과 관계없이 임의의 배경에 배치되어 구축된 데이터셋으로 학습된 네트워크를 실제 환경으로 구성된 데이터셋으로 테스트할 경우 인식률이 저조하다. 이에 본 논문에서는 실제 배경 이미지에 객체 이미지를 합성하고, 다양성을 위해 3차원으로 회전하여 증강하는 인조 데이터셋 생성 시스템을 제안한다. 제안된 방법으로 구축된 인조 데이터셋으로 학습한 네트워크와 실제 데이터셋으로 학습된 네트워크의 인식률을 비교한 결과, 인조 데이터셋의 성능이 실제 데이터셋의 성능보다 2% 낮았지만, 인조 데이터셋을 구축하는 시간이 실제 데이터셋을 구축하는 시간보다 약 11배 빨라 시간적으로 효율적인 데이터셋 구축 시스템임을 증명하였다.

  • PDF

A Study on Augmentation Method for Improving the Performance of the Knowledge Graph Based Attention Network Model (추천 분야에서의 지식 그래프 기반 어텐션 네트워크 모델 성능 향상 기법 연구)

  • Kim, Gyoung-Tae;Min, ChanWook;Kim, JinWoo;Ahn, JinHyun;Jun, Hee-Gook;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.603-605
    • /
    • 2022
  • 추천시스템은 개개인의 성향에 따른 맞춤화 추천이 가능하기 때문에 음악, 영상, 뉴스 등 많은 분야에서 관심을 받고 있다. 일반적인 추천시스템 모델은 블랙박스 모델이기 때문에 추천 결과에 따른 원인 도출을 할 수 없다. 하지만 XAI 의 모델은 이러한 블랙박스 모델의 단점을 해결하고자 제안되었다. 그 중 KGAT 는 Attention Score 를 기반으로 추천 결과에 따른 원인을 알 수 있다. 이와 같은 AI, XAI 등의 딥 러닝 모델에서 각각의 활성화 함수는 상황에 따라 상이한 성능을 나타낸다. 이러한 이유로 인해 데이터에 맞는 활성화 함수를 적용해보는 다양한 시도가 필요하다. 따라서 본 논문은 XAI 추천시스템 모델인 KGAT 의 성능 개선을 위해 여러 활성화 함수를 적용해보고, 실험을 통해 수정한 모델의 성능이 개선됨을 보인다.

Exercise assistance system using facial recognition (안면인식을 이용한 운동 보조 시스템)

  • Duk-Kyu Choi;Seung-Min Lee;Chan-Hyun Park;Jin-Kyu Park;Woo-Seong Choi;Jun-Seong Hwang;Seung-Ho Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.421-422
    • /
    • 2023
  • 최근 GPT 챗봇이 이슈화되면서 AI와 딥러닝을 통한 개발 및 발전되고 있고, 업무에 대한 효율성과 일상생활에서의 편리함을 느낄 수 있다. 다양한 산업들 중 헬스 케어 산업에서는 인공지능과 빅데이터 등 첨단 기술을 활용한 차별화된 서비스 제공에 많은 관심을 기울이고 있다. 현재 안면인식 기술을 적용한 스마트 헬스장은 세계적으로 늘어나고 있다. 최근 한국에서도 안면인식 기술을 활용한 헬스장이 출시되었지만, 회원의 입출입에만 적용이 되고 있어 기술의 활용성이 떨어진다는 문제점이 있다. 또한, 트레이너가 없는 작은 헬스장이나 아파트 헬스장의 경우, PT를 받기 어렵다는 불편함이 있다. 따라서 안면인식 기술을 헬스장의 기구에 적용하여 기존의 인증 방식보다 안전하고 편리하며, 기본적인 정보 사항과 횟수를 기록하고 저장하며 이 전의 데이터와 비교할 수 있는 시스템을 이용하여 PT를 받지 않고도 효율적인 운동이 가능한 시스템을 제안한다.

  • PDF

A Pedestrian Detection Method using Deep Neural Network (심층 신경망을 이용한 보행자 검출 방법)

  • Song, Su Ho;Hyeon, Hun Beom;Lee, Hyun
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.44-50
    • /
    • 2017
  • Pedestrian detection, an important component of autonomous driving and driving assistant system, has been extensively studied for many years. In particular, image based pedestrian detection methods such as Hierarchical classifier or HOG and, deep models such as ConvNet are well studied. The evaluation score has increased by the various methods. However, pedestrian detection requires high sensitivity to errors, since small error can lead to life or death problems. Consequently, further reduction in pedestrian detection error rate of autonomous systems is required. We proposed a new method to detect pedestrians and reduce the error rate by using the Faster R-CNN with new developed pedestrian training data sets. Finally, we compared the proposed method with the previous models, in order to show the improvement of our method.

Road Crack Detection based on Object Detection Algorithm using Unmanned Aerial Vehicle Image (드론영상을 이용한 물체탐지알고리즘 기반 도로균열탐지)

  • Kim, Jeong Min;Hyeon, Se Gwon;Chae, Jung Hwan;Do, Myung Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.155-163
    • /
    • 2019
  • This paper proposes a new methodology to recognize cracks on asphalt road surfaces using the image data obtained with drones. The target section was Yuseong-daero, the main highway of Daejeon. Furthermore, two object detection algorithms, such as Tiny-YOLO-V2 and Faster-RCNN, were used to recognize cracks on road surfaces, classify the crack types, and compare the experimental results. As a result, mean average precision of Faster-RCNN and Tiny-YOLO-V2 was 71% and 33%, respectively. The Faster-RCNN algorithm, 2Stage Detection, showed better performance in identifying and separating road surface cracks than the Yolo algorithm, 1Stage Detection. In the future, it will be possible to prepare a plan for building an infrastructure asset-management system using drones and AI crack detection systems. An efficient and economical road-maintenance decision-support system will be established and an operating environment will be produced.

Analyzing and Solving GuessWhat?! (GuessWhat?! 문제에 대한 분석과 파훼)

  • Lee, Sang-Woo;Han, Cheolho;Heo, Yujung;Kang, Wooyoung;Jun, Jaehyun;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • GuessWhat?! is a game in which two machine players, composed of questioner and answerer, ask and answer yes-no-N/A questions about the object hidden for the answerer in the image, and the questioner chooses the correct object. GuessWhat?! has received much attention in the field of deep learning and artificial intelligence as a testbed for cutting-edge research on the interplay of computer vision and dialogue systems. In this study, we discuss the objective function and characteristics of the GuessWhat?! game. In addition, we propose a simple solver for GuessWhat?! using a simple rule-based algorithm. Although a human needs four or five questions on average to solve this problem, the proposed method outperforms state-of-the-art deep learning methods using only two questions, and exceeds human performance using five questions.

Depth Image based Egocentric 3D Hand Pose Recognition for VR Using Mobile Deep Residual Network (모바일 Deep Residual Network을 이용한 뎁스 영상 기반 1 인칭 시점 VR 손동작 인식)

  • Park, Hye Min;Park, Na Hyeon;Oh, Ji Heon;Lee, Cheol Woo;Choi, Hyoung Woo;Kim, Tae-Seong
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1137-1140
    • /
    • 2019
  • 가상현실(Virtual Reality, VR), 증강현실(Augmented Reality, AR), 혼합현실(Mixed Reality, MR) 분야에 유용한 인간 컴퓨터 인터페이스 기술은 필수적이다. 특히 휴먼 손동작 인식 기술은 직관적인 상호작용을 가능하게 하여, 다양한 분야에서 편리한 컨트롤러로 사용할 수 있다. 본 연구에서는 뎁스 영상 기반의 1 인칭 시점 손동작 인식을 위하여 손동작 데이터베이스 생성 시스템을 구축하여, 손동작 인식기 학습에 필요한 1 인칭(Egocentric View Point) 데이터베이스를 촬영하여 제작한다. 그리고 모바일 Head Mounted Device(HMD) VR 을 위한 뎁스 영상 기반 1 인칭 시점 손동작 인식(Hand Pose Recognition, HPR) 딥러닝 Deep Residual Network 를 구현한다. 최종적으로, 안드로이드 모바일 디바이스에 학습된 Residual Network Regressor 를 이식하고 모바일 VR 에 실시간 손동작 인식 시스템을 구동하여, 모바일 VR 상 실시간 3D 손동작 인식을 가상 물체와의 상호작용을 통하여 확인 한다.

Prediction of pollution loads in Geum River using machine learning (기계학습을 이용한 금강유역 옥천의 오염부하량 예측)

  • Lim, Heesung;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.445-445
    • /
    • 2018
  • 기후변화에 따른 환경오염은 21세기 인류에게 가장 심각한 문제 중의 하나로 대두되고 있다. 환경적인 측면에서 하천오염은 경제적으로 많은 문제를 발생시키고 있다. 이러한 하천오염 문제를 해결하기 위해서는 오염물질의 농도 측적 및 데이터 축적이 필수적이라 할 수 있다. 그러나 일반적으로 오염물질 부하량에 대한 직접적인 측정은 비용 측면에서 쉽지 않은 것이 사실이다. 또한 실시간으로 BOD, COD, TN, TP 등의 자료를 이용하여 예측하는 것에는 자료의 부족성으로 인해 한계가 있다. 본 연구에서는 구글의 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하여 기계학습을 통한 하천오염 예측을 목적으로 하고 있다. 기계학습을 위하여 텐서플로우를 활용하여 RNN, LSTM 인공신경망 모형을 구축하였다. 하천오염의 학습과 예측을 위해 결과치 분석을 위한 자료로는 금강 유역에 위치한 옥천 관측소 충청북도 옥천군 이원면 이원대교에 위치한 $36^{\circ}14'31.0''N$ $127^{\circ}40'02.6''E$의 관측소에서 BOD, COD, DO, 부유물질의 자료를 사용하였다. 모형의 학습을 위해서 입력자료는 수위, 유량, 평균기온, 평균풍속 자료를 2004년 ~ 2017년까지의 14년간의 자료를 사용하였다. 연구를 위해 BOD, COD, DO 부유물질 자료는 물환경정보시스템(http://water.nier.go.kr/)의 자료를 활용하고 수위, 유량등의 자료는 국가수자원관리종합정보시스템 (http://www.wamis.go.kr/)의 자료를 사용하였다. 그러나 수온, 수위, 풍속등의 자료는 일 자료가 있는가 반면 BOD, COD, TN, TP등의 자료는 일 자료가 있지 않아 이를 원활히 활용할 수 있도록 예측을 위한 결과치의 선형보간법을 통해 일 자료를 획득한 후 연구를 하였다. RNN, LSTM의 분석 시 학습속도, 반복시행횟수 sequence length의 길이 등의 값을 조절 하면서 결과치를 분석하였다.

  • PDF

Prediction of river water quality factor at Oncheoncheon Basin using RNN algorithm (RNN 알고리즘을 이용한 온천천의 하천수질 인자 예측)

  • Lim, Heesung;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.39-39
    • /
    • 2019
  • 인구의 도시 집중화로 인하여 다량의 생활용수의 사용에 따라 하천의 자정능력을 초과하여 오염을 유발시키고 있다. 이에 도시하천들의 오염은 점점 심해져 경제적으로 많은 문제를 유발하고 있다. 이러한 하천오염 문제를 과학적으로 대응하기 위해서는 오염물질의 농도 측정 및 데이터 축척을 통한 오염예측이 필수적이라 할 수 있으며, 부산광역시 보건환경정보 공개시스템에서는 하천수질 자동측정망을 설치하여 시간 단위로 오염물질을 측정하고 있다. 그러나 온천천의 하천수질 데이터는 계속 쌓여가고 있는데 이 데이터를 활용해서 하천수질 인자 예측이 거의 이뤄지지 않고 있다. 본 연구에서는 순환신경망 알고리즘을 활용하여 일 단위의 하천수질 인자 예측을 시도하였다. 순환신경망은 인공신경망의 발전된 형태인 시계열 학습에 강한 RNN, LSTM 알고리즘을 활용한 일단위 하천수질 인자 예측을 하고자 하였다. 연구에 앞서 시간 단위로 쌓여있는 데이터를 평균 내어 일 단위로 변경하였고 이 데이터를 가지고 일 단위 하천수질 인자 예측을 진행하였다. 연구에는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하여 DO, 탁도 등 항목을 예측하였다. 하천오염의 학습과 예측을 위해 대상지로는 부산지역 온천천의 부곡교, 세병교, 이섭교 관측소를 선택하였다. 연구를 위해 DO, 탁도 등 자료 수집은 부산광역시 보건환경정보 공개시스템의 자료를 활용하였다. 모형의 학습을 위해 입력자료로는 하천수질 인자 자료를 이용하였고, 자료의 학습에는 2014년~2017년 4년간의 자료를 학습자료로 사용하였고, 2018년 1년간의 자료는 모형의 검증을 위해 사용하였다. RNN, LSTM 알고리즘을 활용하여 분석 시 은닉층의 개수, 반복시행횟수, sequence length 등의 값을 조절하여 하천수질 인자 예측을 하였다. 모형의 검증을 위해 $R^2$(r square)와 RMSE(root mean square error)을 이용하여 통계분석을 실시하였다.

  • PDF