• Title/Summary/Keyword: 딥러닝 분석

Search Result 1,403, Processing Time 0.032 seconds

딥러닝을 이용한 부채널 분석 기술 연구 동향

  • Jin, Sunghyun;Kim, HeeSeok
    • Review of KIISC
    • /
    • v.30 no.1
    • /
    • pp.43-53
    • /
    • 2020
  • 딥러닝 기술의 발달로 인해 다양한 응용 분야에서 해당 기술 활용 시 좋은 성능을 보임에 따라 부채널 분석 분야에서도 딥러닝 기술을 적용하는 연구들이 활발히 진행되고 있다. 초기 딥러닝 기술은 데이터 분류 문제를 해결해야 하는 템플릿 공격과 같은 프로파일링 기반의 부채널 공격에 집중되어 적용되었지만 최근에는 프로파일링 기반의 부채널 분석 뿐만 아니라 상관 전력 분석 등과 같은 논프로파일링 기반 부채널 공격, 파형 인코딩 및 전처리, 부채널 누출신호 탐색 등으로 연구범위가 확대되어지고 있다. 본 논문에서는 딥러닝을 이용한 부채널 분석 기술의 최신 연구 동향을 분야별로 체계적으로 정리 및 분석하고자 한다.

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning (신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어)

  • Mun, Jong Hyeok;Kim, Do Hyung;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2021
  • With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.

Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models (회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석)

  • Min-Ho Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.299-304
    • /
    • 2023
  • Among artificial intelligence techniques, deep learning is a model that has been used in many places and has proven its effectiveness. However, deep learning models are not used effectively in everywhere. In this paper, we will show the limitations of deep learning models through comparison of regression analysis and deep learning models, and present a guide for effective use of deep learning models. In addition, among various techniques used for optimization of deep learning models, data normalization and data shuffling techniques, which are widely used, are compared and evaluated based on actual data to provide guidelines for increasing the accuracy and value of deep learning models.

Implementation of Yolov3-tiny Object Detection Deep Learning Model over RISC-V Virtual Platform (RISC-V 가상플랫폼 기반 Yolov3-tiny 물체 탐지 딥러닝 모델 구현)

  • Kim, DoYoung;Seol, Hui-Gwan;Lim, Seung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.576-578
    • /
    • 2022
  • 딥러닝 기술의 발전으로 객체 인색, 영상 분석에 관한 성능이 비약적으로 발전하였다. 하지만 고성능 GPU 를 사용하는 컴퓨팅 환경이 아닌 제한적인 엣지 디바이스 환경에서의 영상 처리 및 딥러닝 모델의 적용을 위해서는 엣지 디바이스에서 딥러닝 모델 실행 환경 과 이에 대한 분석이 필요하다. 본 논문에서는 RISC-V ISA 를 구현한 RISC-V 가상 플랫폼에 yolov3-tiny 모델 기반 객체 인식 시스템을 소프트웨어 레벨에서 포팅하여 구현하고, 샘플 이미지에 대한 네트워크 딥러닝 연산 및 객체 인식 알고리즘을 적용하여 그 결과를 도출하여 보았다. 본 적용을 바탕으로 RISC-V 기반 임베디드 엣지 디바이스 플랫폼에서 딥러닝 네트워크 연산과 객체 인식 알고리즘의 수행에 대한 분석과 딥러닝 연산 최적화를 위한 알고리즘 연구에 활용할 수 있다.

Buffering analysis of CNN module based on RISC-V platform (RISC-V 플랫폼 기반 CNN 모듈의 버퍼링 분석)

  • Kim, Jin-Young;Lim, Seung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.9-11
    • /
    • 2021
  • 최근 임베디드 엣지 컴퓨팅 디바이스에서 AI와 같은 인공지은 연산을 수행하여 AI 추론 연산의 가속화 및 분산화가 많이 이루어지고 있다. 엣지 디바이스는 임베디드 프로세서를 기반으로 AI의 가속 연산을 위해서 내부에 딥러닝 가속기를 포함하여 가속화시키는 시스템 구성을 하고 있다. 딥러닝 가속기는 복잡한 Neural Network 연산을 위한 데이터 이동이 많으며 외부 메모리와 내부 딥러닝 가속기간의 효율적인 데이터 이동 및 버퍼링이 필요하다. 본 연구에서는 엣지 디바이스 딥러닝 가속기 내부의 버퍼 구조를 모델링하고, 버퍼의 크기에 따른 버퍼링 효과를 분석해 보았다. 딥러닝 가속기 버퍼 구조는 RISC-V 프로세서 기반 가상 플랫폼에 구현되었다. 이를 통해서 딥러닝 모델에 따른 딥러닝 가속기 버퍼의 사용성을 분석할 수 있다.

Application of Artificial Intelligence and Deep Learning Technique in Water Resources (인공지능 및 딥러닝 기법의 수자원 분야 적용 현황)

  • Hwang, Seok Hwan;Yoon, Jungsoo;Kang, Narae;Noh, Huiseong;Oh, Byunghwa;Lee, Jungha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.28-28
    • /
    • 2018
  • 본 연구에서는 최근 급격히 발달하고 있는 인공지능 및 딥러닝 기술에 대한 소개와 수문기상을 포함한 수자원 분야에의 적용사례를 검토하였다. 본 연구의 목적은 우리 삶의 일부가 되어 가고 있는 인공지능 및 딥러닝 기술을 이해하고 보다 실효적인 측면에서 수자원 분야에 적용 활용하기 위한 연구 가이드라인을 제시하기 위함이다. 이를 위해 최근 널리 사용되는 인공지능 및 딥러닝 기법을 조사 분석하였다. 분석을 통해 수자원 분야에서 이러한 기술이 요구되는 분야와 신기술(emerging techniques)을 조망해 보고 기존 기술이 인공지능 및 딥러닝 기법의 적용으로 대체 가능한 정도를 가늠해 보았다. 이를 통해 인공지능 및 딥러닝 기술 적용의 장점과 한계를 고찰하고 향후 집중 연구가 필요한 기술을 제시하였다.

  • PDF

A Study on Development Deep Learning Based Learning System for Enhancing the Data Analytical Thinking (데이터 분석적 사고력 향상을 위한 딥러닝 기반 학습 시스템 개발 연구)

  • Lee, Young-ho;Koo, Duk-hoi
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The purpose of this study is to develop a deep learning based learning system for improving learner's data analytical thinking ability. The contents of the study are as follows. First, deep learning was applied to the discovery learning model to improve data analytical thinking ability. This is a learning method that can generate a model showing the relationship of given data by using the deep learning method, then apply the model to new data to obtain the result. Second, we developed a deep learning based system for DBD learning model. Specifically, we developed a system to generate a model of data using the deep learning method and to apply this model. The research of deep learning based learning system will be a new approach to improve learner's data analytical thinking ability in future society where data becomes more important.

Deep Learning Technologies for Analysis of TV Drama Video Stories (TV 드라마 비디오 스토리 분석 딥러닝 기술)

  • Nam, Jang-Gun;Kim, Jin-Hwa;Kim, Byeong-Hui;Jang, Byeong-Tak
    • Broadcasting and Media Magazine
    • /
    • v.22 no.1
    • /
    • pp.91-102
    • /
    • 2017
  • 비디오 정보를 자동으로 학습하고 관련 문제를 해결하기 위해서는, 비디오의 기본 구성요소인 영상, 음성, 언어 정보의 학습을 기반으로 고차원의 추상적 개념을 파악하는 기술이 필수적이다. 최근 딥러닝이 실용적인 수준으로 이러한 기술을 가능하게 함에 따라, 보다 도전적인 비디오 스토리 분석과 이해 문제 해결을 시도할 수 있게 되었다. 본 고에서는 비디오의 요소별 분석에 적용 가능한 최신 딥러닝 기술을 소개하고, 딥러닝 기술을 핵심으로 한 TV 드라마의 스토리 분석 사례를 살펴본다.

딥러닝 기반 얼굴인식 모델에 대한 변조 영역 제한 기만공격

  • Ryu, Gwonsang;Park, Hosung;Choi, Daeseon
    • Review of KIISC
    • /
    • v.29 no.3
    • /
    • pp.44-50
    • /
    • 2019
  • 최근 딥러닝 기술은 다양한 분야에서 놀라운 성능을 보여주고 있어 많은 서비스에 적용되고 있다. 얼굴인식 또한 딥러닝 기술을 접목하여 높은 수준으로 얼굴인식이 가능해졌다. 하지만 딥러닝 기술은 원본 이미지를 최소한으로 변조시켜 딥러닝 모델의 오인식을 발생시키는 적대적 예제에 취약하다. 이에 따라, 본 논문에서는 딥러닝 기반 얼굴인식 시스템에 대해 적대적 예제를 이용하여 기만공격 실험을 수행하였으며 실제 얼굴에 분장할 수 있는 영역을 고려하여 설정된 변조 영역에 따른 기만공격 성능을 분석한다.

Comparison and Analysis of Deep Learning Framework (딥러닝 프레임워크 비교 및 분석)

  • Kim, Dong-Wook;Kim, Sesong;Jung, Seung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.949-950
    • /
    • 2017
  • 딥러닝(Deep Learning)을 효과적으로 연구하고 개발할 수 있도록 도와주는 다양한 딥러닝 프레임워크(Deep Learning Framework)가 있다. 딥러닝 프레임워크는 현재 100 가지도 넘는 종류가 있다. 그렇기 때문에 개발의 목적에 가장 적합한 딥러닝 프레임워크를 선택하는 것은 쉽지 않다. 본고에서는 5가지 대표적인 딥러닝 프레임워크에 대해서 각각의 특징을 분석하고 비교한다. 이를 통하여 딥러닝을 개발하기 전에 개발 목적에 적합한 프레임워크를 선택할 수 있는 간단한 안목을 제시한다.