• Title/Summary/Keyword: 딥러닝 교육

Search Result 125, Processing Time 0.027 seconds

A Study on Worker Risk Reduction Methods using the Deep Learning Image Processing Technique in the Turning Process (선삭공정에서 딥러닝 영상처리 기법을 이용한 작업자 위험 감소 방안 연구)

  • Bae, Yong Hwan;Lee, Young Tae;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.1-7
    • /
    • 2021
  • The deep learning image processing technique was used to prevent accidents in lathe work caused by worker negligence. During lathe operation, when the chuck is rotated, it is very dangerous if the operator's hand is near the chuck. However, if the chuck is stopped during operation, it is not dangerous for the operator's hand to be in close proximity to the chuck for workpiece measurement, chip removal or tool change. We used YOLO (You Only Look Once), a deep learning image processing program for object detection and classification. Lathe work images such as hand, chuck rotation and chuck stop are used for learning, object detection and classification. As a result of the experiment, object detection and class classification were performed with a success probability of over 80% at a confidence score 0.5. Thus, we conclude that the artificial intelligence deep learning image processing technique can be effective in preventing incidents resulting from worker negligence in future manufacturing systems.

Fashion Image Searching Website based on Deep Learning Image Classification (딥러닝 기반의 이미지 분류를 이용한 패션 이미지 검색 웹사이트)

  • Lee, Hak-Jae;Lee, Seok-Jun;Choi, Moon-Hyuk;Kim, So-Yeong;Moon, Il-Young
    • Journal of Practical Engineering Education
    • /
    • v.11 no.2
    • /
    • pp.175-180
    • /
    • 2019
  • Existing fashion web sites show only the search results for one type of clothes in items such as tops and bottoms. As the fashion market grows, consumers are demanding a platform to find a variety of fashion information. To solve this problem, we devised the idea of linking image classification through deep learning with a website and integrating SNS functions. User uploads their own image to the web site and uses the deep learning server to identify, classify and store the image's characteristics. Users can use the stored information to search for the images in various combinations. In addition, communication between users can be actively performed through the SNS function. Through this, the plan to solve the problem of existing fashion-related sites was prepared.

Learning Performance Analysis Using Deep Learning (딥러닝기법을 활용한 학습성과분석)

  • Oh, Jeong-Hoon;Yu, Heonchang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.711-714
    • /
    • 2018
  • 본 연구의 목적은 교육관리시스템(LMS)에서의 학습활동로그를 바탕으로 학습성과 영향도를 분석하고 이를 예측하기 위한 모델을 개발하는데 있다. 연구방법은 먼저 상관분석을 사용하여 유의미한 변수를 선정하였으며, 딥러닝을 사용하여 예측 모델을 생성하였다. 모델 생성 결과 테스트 데이터 셋에 대해 약 84%의 정확도로 학습성과를 예측할 수 있었다. 본 연구는 온라인 교육환경에서 빅데이터와 인공지능을 적용할 수 있는 새로운 관점을 제공할 것으로 기대한다.

Analyzing Students' Non-face-to-face Course Evaluation by Topic Modeling and Developing Deep Learning-based Classification Model (토픽 모델링 기반 비대면 강의평 분석 및 딥러닝 분류 모델 개발)

  • Han, Ji Yeong;Heo, Go Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.267-291
    • /
    • 2021
  • Due to the global pandemic caused by COVID-19 in 2020, there have been major changes in the education sites. Universities have fully introduced remote learning, which was considered as an auxiliary education, and non-face-to-face classes have become commonplace, and professors and students are making great efforts to adapt to the new educational environment. In order to improve the quality of non-face-to-face lectures amid these changes, it is necessary to study the factors affecting lecture satisfaction. Therefore, This paper presents a new methodology using big data to identify the factors affecting university lecture satisfaction changed before and after COVID-19. We use Topic Modeling method to analyze lecture reviews before and after COVID-19, and identify factors affecting lecture satisfaction. Through this, we suggest the direction for university education to move forward. In addition, we can identify the factors of satisfaction and dissatisfaction of lectures from multiangle by establishing a topic classification model with an F1-score of 0.84 based on KoBERT, a deep learning language model, and further contribute to continuous qualitative improvement of lecture satisfaction.

An Experimental Comparison of CNN-based Deep Learning Algorithms for Recognition of Beauty-related Skin Disease

  • Bae, Chang-Hui;Cho, Won-Young;Kim, Hyeong-Jun;Ha, Ok-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.25-34
    • /
    • 2020
  • In this paper, we empirically compare the effectiveness of training models to recognize beauty-related skin disease using supervised deep learning algorithms. Recently, deep learning algorithms are being actively applied for various fields such as industry, education, and medical. For instance, in the medical field, the ability to diagnose cutaneous cancer using deep learning based artificial intelligence has improved to the experts level. However, there are still insufficient cases applied to disease related to skin beauty. This study experimentally compares the effectiveness of identifying beauty-related skin disease by applying deep learning algorithms, considering CNN, ResNet, and SE-ResNet. The experimental results using these training models show that the accuracy of CNN is 71.5% on average, ResNet is 90.6% on average, and SE-ResNet is 95.3% on average. In particular, the SE-ResNet-50 model, which is a SE-ResNet algorithm with 50 hierarchical structures, showed the most effective result for identifying beauty-related skin diseases with an average accuracy of 96.2%. The purpose of this paper is to study effective training and methods of deep learning algorithms in consideration of the identification for beauty-related skin disease. Thus, it will be able to contribute to the development of services used to treat and easy the skin disease.

Research on Training and Implementation of Deep Learning Models for Web Page Analysis (웹페이지 분석을 위한 딥러닝 모델 학습과 구현에 관한 연구)

  • Jung Hwan Kim;Jae Won Cho;Jin San Kim;Han Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.517-524
    • /
    • 2024
  • This study aims to train and implement a deep learning model for the fusion of website creation and artificial intelligence, in the era known as the AI revolution following the launch of the ChatGPT service. The deep learning model was trained using 3,000 collected web page images, processed based on a system of component and layout classification. This process was divided into three stages. First, prior research on AI models was reviewed to select the most appropriate algorithm for the model we intended to implement. Second, suitable web page and paragraph images were collected, categorized, and processed. Third, the deep learning model was trained, and a serving interface was integrated to verify the actual outcomes of the model. This implemented model will be used to detect multiple paragraphs on a web page, analyzing the number of lines, elements, and features in each paragraph, and deriving meaningful data based on the classification system. This process is expected to evolve, enabling more precise analysis of web pages. Furthermore, it is anticipated that the development of precise analysis techniques will lay the groundwork for research into AI's capability to automatically generate perfect web pages.

Attention/LIME method to analyze decision process of RNN (Attention과 LIME기법을 활용한 순환신경망의 의사결정 요인 분석)

  • Yoon, Joo-Sung;Park, Jong-Cheol;Ha, Jong-Su;An, Jin-Hyeon;Kim, Hyeon-Cheol
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.253-256
    • /
    • 2017
  • 딥러닝으로 만들어진 모델의 내부는 black box와 같은 특성을 가져 동작 규칙을 알기 어렵다. 최근 기계학습의 발전으로 인공지능이 전보다 더 복잡한 문제를 해결할 수 있으나 위와 같은 이유로, 모델이 내린 판단의 근거를 알기 어렵다. 그러므로 딥러닝의 동작 규칙을 사람이 이해할 수 있는 형식으로 나타내려는 노력이 필요하다. 본 연구에서는 Attention과 LIME 기법을 활용하여 IMDB 데이터를 감성 분석한 순환신경망의 의사결정 요인을 분석하였다. 각 기법을 활용했을 때의 장단점과 실제 구현에 있어 등장하는 문제에 대해 알아보고자 한다.

  • PDF

Development of the Artificial Intelligence Literacy Education Program for Preservice Secondary Teachers (예비 중등교사를 위한 인공지능 리터러시 교육 프로그램 개발)

  • Bong Seok Jang
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.65-70
    • /
    • 2024
  • As the interest in AI education grows, researchers have made efforts to implement AI education programs. However, research targeting pre-service teachers has been limited thus far. Therefore, this study was conducted to develop an AI literacy education program for preservice secondary teachers. The research results revealed that the weekly topics included the definition and applications of AI, analysis of intelligent agents, the importance of data, understanding machine learning, hands-on exercises on prediction and classification, hands-on exercises on clustering and classification, hands-on exercises on unstructured data, understanding deep learning, application of deep learning algorithms, fairness, transparency, accountability, safety, and social integration. Through this research, it is hoped that AI literacy education programs for preservice teachers will be expanded. In the future, it is anticipated that follow-up studies will be conducted to implement relevant education in teacher training institutions and analyze its effectiveness.

Clustering with Adaptive weighting of Context-aware Linear regression (상황인식기반 선형회귀의 적응적 가중치를 적용한 클러스터링)

  • Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.271-273
    • /
    • 2021
  • 본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.

  • PDF

A Deep Learning-based Hand Gesture Recognition Robust to External Environments (외부 환경에 강인한 딥러닝 기반 손 제스처 인식)

  • Oh, Dong-Han;Lee, Byeong-Hee;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.31-39
    • /
    • 2018
  • Recently, there has been active studies to provide a user-friendly interface in a virtual reality environment by recognizing user hand gestures based on deep learning. However, most studies use separate sensors to obtain hand information or go through pre-process for efficient learning. It also fails to take into account changes in the external environment, such as changes in lighting or some of its hands being obscured. This paper proposes a hand gesture recognition method based on deep learning that is strong in external environments without the need for pre-process of RGB images obtained from general webcam. In this paper we improve the VGGNet and the GoogLeNet structures and compared the performance of each structure. The VGGNet and the GoogLeNet structures presented in this paper showed a recognition rate of 93.88% and 93.75%, respectively, based on data containing dim, partially obscured, or partially out-of-sight hand images. In terms of memory and speed, the GoogLeNet used about 3 times less memory than the VGGNet, and its processing speed was 10 times better. The results of this paper can be processed in real-time and used as a hand gesture interface in various areas such as games, education, and medical services in a virtual reality environment.