• Title/Summary/Keyword: 딥러닝 교육

Search Result 125, Processing Time 0.029 seconds

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Performance Comparison of PM10 Prediction Models Based on RNN and LSTM (RNN과 LSTM 기반의 PM10 예측 모델 성능 비교)

  • Jung, Yong-jin;Lee, Jong-sung;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.280-282
    • /
    • 2021
  • A particular matter prediction model was designed using a deep learning algorithm to solve the problem of particular matter forecast with subjective judgment applied. RNN and LSTM were used among deep learning algorithms, and it was designed by applying optimal parameters by proceeding with hyperparametric navigation. The predicted performance of the two models was evaluated through RMSE and predicted accuracy. The performance assessment confirmed that there was no significant difference between the RMSE and accuracy, but there was a difference in the detailed forecast accuracy.

  • PDF

A Study on Development of Collaborative Problem Solving Prediction System Based on Deep Learning: Focusing on ICT Factors (딥러닝 기반 협력적 문제 해결력 예측 시스템 개발 연구: ICT 요인을 중심으로)

  • Lee, Youngho
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.1
    • /
    • pp.151-158
    • /
    • 2018
  • The purpose of this study is to develop a system for predicting students' collaborative problem solving ability based on the ICT factors of PISA 2015 that affect collaborative problem solving ability. The PISA 2015 computer-based collaborative problem-solving capability evaluation included 5,581 students in Korea. As a research method, correlation analysis was used to select meaningful variables. And the collaborative problem solving ability prediction model was created by using the deep learning method. As a result of the model generation, we were able to predict collaborative problem solving ability with about 95% accuracy for the test data set. Based on this model, a collaborative problem solving ability prediction system was designed and implemented. This research is expected to provide a new perspective on applying big data and artificial intelligence in decision making for ICT input and use in education.

Examining Suicide Tendency Social Media Texts by Deep Learning and Topic Modeling Techniques (딥러닝 및 토픽모델링 기법을 활용한 소셜 미디어의 자살 경향 문헌 판별 및 분석)

  • Ko, Young Soo;Lee, Ju Hee;Song, Min
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.3
    • /
    • pp.247-264
    • /
    • 2021
  • This study aims to create a deep learning-based classification model to classify suicide tendency by suicide corpus constructed for the present study. Also, to analyze suicide factors, the study classified suicide tendency corpus into detailed topics by using topic modeling, an analysis technique that automatically extracts topics. For this purpose, 2,011 documents of the suicide-related corpus collected from social media naver knowledge iN were directly annotated into suicide-tendency documents or non-suicide-tendency documents based on suicide prevention education manual issued by the Central Suicide Prevention Center, and we also conducted the deep learning model(LSTM, BERT, ELECTRA) performance evaluation based on the classification model, using annotated corpus data. In addition, one of the topic modeling techniques, LDA identified suicide factors by classifying thematic literature, and co-word analysis and visualization were conducted to analyze the factors in-depth.

Detection Model based on Deeplearning through the Characteristics Image of Malware (악성코드의 특성 이미지화를 통한 딥러닝 기반의 탐지 모델)

  • Hwang, Yoon-Cheol;Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.137-142
    • /
    • 2021
  • Although the internet has gained many conveniences and benefits, it is causing economic and social damage to users due to intelligent malware. Most of the signature-based anti-virus programs are used to detect and defend this, but it is insufficient to prevent malware variants becoming more intelligent. Therefore, we proposes a model that detects and defends the intelligent malware that is pouring out in the paper. The proposed model learns by imaging the characteristics of malware based on deeplearning, and detects newly detected malware variants using the learned model. It was shown that the proposed model detects not only the existing malware but also most of the variants that transform the existing malware.

A performance evaluation study of a deep learning-based voice synthesis technique using Mel-Conceptual Distortion (MCD). (멜-셉스트럴 왜곡(MCD)를 활용한 딥러닝 기반 목소리 합성 기술의 성능 평가 연구)

  • Jaesang Han;Yunseo Kang;Sangwoo Na;Hayeon Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.488-489
    • /
    • 2023
  • 노래 음성 변환(Singing Voice Conversion, SVC)은 오디오 처리 분야에서 최근 활발히 연구되는 분야 중 하나로, 원래의 멜로디와 가사를 유지하면서 소스 가수의 노래 음성을 대상 가수의 음성으로 변환하는 것을 목표로 한다. 본 논문에서는 딥러닝 기반 SVC 모델을 중심으로 멜 셉스트럴 왜곡 지표를 활용해 모델 간 성능 평가를 진행한다. 이를 통해 엔터테인먼트, 교육 등 분야에서 효율적인 SVC 모델을 찾아 활용할 수 있을 것이다.

A Study on the Deep Learning-Based Textbook Questionnaires Detection Experiment (딥러닝 기반 교재 문항 검출 실험 연구)

  • Kim, Tae Jong;Han, Tae In;Park, Ji Su
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.513-520
    • /
    • 2021
  • Recently, research on edutech, which combines education and technology in the e-learning field called learning, education and training, has been actively conducted, but it is still insufficient to collect and utilize data tailored to individual learners based on learning activity data that can be automatically collected from digital devices. Therefore, this study attempts to detect questions in textbooks or problem papers using artificial intelligence computer vision technology that plays the same role as human eyes. The textbook or questionnaire item detection model proposed in this study can help collect, store, and analyze offline learning activity data in connection with intelligent education services without digital conversion of textbooks or questionnaires to help learners provide personalized learning services even in offline learning.

Study for Prediction System of Learning Achievements of Cyber University Students using Deep Learning based on Autoencoder (오토인코더에 기반한 딥러닝을 이용한 사이버대학교 학생의 학업 성취도 예측 분석 시스템 연구)

  • Lee, Hyun-Jin
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1115-1121
    • /
    • 2018
  • In this paper, we have studied a data analysis method by deep learning to predict learning achievements based on accumulated data in cyber university learning management system. By predicting learner's academic achievement, it can be used as a tool to enhance learner's learning and improve the quality of education. In order to improve the accuracy of prediction of learning achievements, the autoencoder based attendance prediction method is developed to improve the prediction performance and deep learning algorithm with ongoing evaluation metrics and predicted attendance are used to predict the final score. In order to verify the prediction results of the proposed method, the final grade was predicted by using the evaluation factor attendance data of the learning process. The experimental result showed that we can predict the learning achievements in the middle of semester.

D.I.Y : Block-based Programming Platform for Machine Learning Education (D.I.Y : 머신러닝 교육을 위한 블록 기반 프로그래밍 플랫폼)

  • Lee, Se-hoon;Jeong, Ji-hyun;Lee, Jin-hyeong;Jo, Cheon-woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.245-246
    • /
    • 2020
  • 본 논문에서는 블록형 코딩 방식을 통해 비전공자가 스스로 머신러닝의 쉽게 원리를 구현해 볼 수 있는 딥아이( D.I.Y, Deep AI Yourself) 플랫폼을 제안하였다. 딥아이는 구글의 오픈 소스 블록형 코딩 툴 개발 라이브러리인 Blockly를 기반으로 머신러닝 알고리즘을 쉽게 구현할 수 다양한 블록으로 구성되어 있다. Blockly는 CSR 기반이며 사용자가 개발한 블록 코드는 내부적으로 코드 생성기에 의해 파이썬 코드 등으로 변환되어 백엔드 서버에서 처리를 하며 결과를 사용자에게 제공한다.

  • PDF

Comparison of Student Churning Prediction Models based on Deep Learning Algorithms (딥러닝 알고리즘에 기반한 퇴원 학생 예측모델 비교)

  • Ko, Young-Sang;Lim, Heui-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.833-835
    • /
    • 2019
  • 교육열이 강한 우리나라에서는 사교육은 언제나 뜨거운 감자이다. 교육대상 연령층의 인구수가 1990 년부터 빠르게 감소하기 시작했으며, 2005 년을 전후로 초등학생 수의 감소가 더욱 빨라지고 있다. 통계청 데이터에 따르면 2016 년 출생아 수는 40 만 6 천여명에서 2017 년은 35 만 7 천여명으로 향후에도 지속적으로 줄어들 추세이다. 이렇듯 매년 학생수가 감소함에도 불구하고 2018 년 사교육비 총액은 19 조 5 천억수준으로 2017 년 18 조 7 천억보다 8 천억원이 늘어 났다. 학생수는 전년보다 2.5% 줄었지만 사교육비는 반대로 4.4% 늘어났다. 이렇듯 사교육 시장이 심화 되게 되면 경쟁은 더욱 치열해 질 수 밖에 없으며 이 경쟁에서 살아 남기 위해서는 다양한 비즈니스 전략이 필요하며 특히 학생들의 이탈을 줄이는 것은 사업의 가장 중요한 포인트라고 볼 수 있을 것이다. 학원에서의 학생이 퇴원을 하는 이유에 대한 영향도를 분석하고 그 영향도 분석을 통해 학원 학생들의 퇴원 방지에 활용하고자 한다. 본 논문의 주요 연구 내용은 사교육을 대표하는 국내 사설 학원에서의 성적, 출결사항 및 학원 상담 내역 등의 다양한 학원 데이터들을 최적의 딥러닝 알고리즘 분석을 통한 퇴원 학생을 사전 예측하기 위한 논문임을 밝힌다.