• 제목/요약/키워드: 딥러닝 교육

검색결과 125건 처리시간 0.027초

인공지능시대의 교육철학 소고 (A Study for Philosophy of education in the era of AI)

  • 곽태진
    • 한국교육논총
    • /
    • 제40권2호
    • /
    • pp.1-16
    • /
    • 2019
  • 지능정보사회는 사물, 지식, 계산을 키워드로 하는 새로운 세계이다. 이 세계에서 교육개혁의 철학적 조건은 무엇인가? 로빈슨과 애로니카(2015)는 현재의 교육개혁이 유기 농업이라는 상징을 중심으로 이루어져야 한다고 주장한바 여기에는 유기체로서의 인간의 존엄성에 대한 문제의식이 담겨 있다. 인간은 지능과 생명의 결합체이다. 인공지능의 개발은 안드로이드의 상호작용 증가에 따른 인간적 본질에 대한 물음을 제기한다. 현실적으로는 딥러닝으로 상징되는 인공지능의 발전이 교육개혁의 조건이 될 것이다. 반면 정보기술과 예술의 결합은 새로운 생명 이미지의 창출을 통해 인공생명의 문제, 곧 생명 자체에 관한 문제를 제기할 것이다. 인간적 본질에 대한 물음이 생명 자체에 관한 물음과 함께 회귀한다. 인공지능과 인공생명이 낳는 철학적 물음은 교육적 물음과 패러독스를 이루어 미래의 교육개혁에 난문(難問)을 던질 것이다.

인공지능 챗GPT의 교육목회에 효율적인 활용방안 (Efficient use of artificial intelligence ChatGPT in educational ministry)

  • 옥장흠
    • 기독교교육논총
    • /
    • 제78권
    • /
    • pp.57-85
    • /
    • 2024
  • 연구의 목적 : 본 연구는 인공지능 생성형 AI를 교육목회에 활용하기 위하여, 인공지능과 생성형 AI의 개념과 교육목회의 교육신학적 측면을 분석하여 인공지능 ChatGPT를 교육목회에 효율적인 활용방안을 모색하는 것이다. 연구의 내용 및 방법 : 본 연구의 내용은 첫째, 인공지능과 생성형 AI의 개념을 인공지능의 개념, 인공지능의 종류, 생성형 언어모델 AI ChatGPT로 나누어 분석하였다. 둘째, 교육목회의 교육신학적 접근을 교육목회의 개념, 교육목회의 목표, 교육목회의 내용, 인공지능 시대 교육목회의 방향으로 나누어 분석하였다. 셋째, 인공지능 ChatGPT를 교육목회의 활용방안을 모색하기 위하여, 초대교회 공동체의 교회의 5가지 기능(행 2:42~47)을 중심으로, 설교 원고 작성의 도구, 예배와 기도의 준비 도구, 교회 교육을 위한 도구, 성도의 교재를 위한 도구, 섬김과 봉사를 위한 도구로 나누어 분석하였다. 결론 및 제언 : 본 연구의 결론은 첫째, 인공지능 ChatGPT를 통해서 설교 원고를 작성하는 경우 설교자의 영성과 신앙, 그리고 통찰을 통해서 질 좋은 설교 원고를 작성할 수 있다. 둘째, 인공지능 ChatGPT를 통해서 효율적으로 예배를 디자인하고, 기획하고, 다양한 시나리오를 통해서, 객관적으로 회중을 섬기는 예배(Service)를 준비할 수 있다. 셋째, 인공지능 ChatGPT를 교회 교육에 활용함으로, 인간과 인공지능 교사와 협업을 통해서 교사와의 상호 보완적인 관계를 유지하면서 활용할 수 있다. 넷째, 인공지능 ChatGPT를 통해서 교회 공동체 구성원들이 영적 교제를 나눌 수 있는 프로그램, 교회 구성원의 필요를 충족시키고 상호 의존성을 강화시킬 수 있는 방안, 새로운 사람들을 적극적으로 환영하고, 다양성을 존중하는 태도를 길러주고, 그리스도의 사랑 안에서 서로 사랑하고, 섬기며, 함께 성장해 나가는 데 중요한 역할을 할 수 있는 유익한 자료들을 제공해 준다. 마지막으로, 인공지능 ChatGPT를 통해서 봉사활동에 대한 다양한 정보와 지역사회의 아동이나 청소년들에게 학습 지원, 멘토링 관련 프로그램, 지역사회의 마을 공동체를 형성하는데 주도적인 역할 등을 수행할 수 있는 방안들을 모색하는 프로그램들을 제공 받을 수 있다.

3차원 가상도시 모델에서 높이맵을 이용한 CNN 기반의 그림자 탐지방법 (CNN-based Shadow Detection Method using Height map in 3D Virtual City Model)

  • 윤희진;김주완;장인성;이병대;김남기
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.55-63
    • /
    • 2019
  • 최근 교육, 제조, 건설 등 다양한 응용 분야에서 사실적인 가상환경을 표현하기 위하여 실세계 영상데이터를 활용하는 사례가 증가하고 있다. 특히, 스마트 시티 등 디지털 트윈에 대한 관심이 높아지면서, 항공 영상 등 실제 촬영한 영상을 이용하여 현실감 있는 3D 도시 모델을 구축하고 있다. 그러나, 촬영된 항공 영상에는 태양에 의한 그림자가 포함되어 있으며, 그림자가 포함된 3D 도시 모델은 사용자에게 정보를 왜곡시켜 표현하는 문제를 안고 있다. 그림자를 제거하기 위하여 그동안 많은 연구가 진행되었지만, 아직까지 해결하기 어려운 도전적인 문제로 인식되고 있다. 본 논문에서는 VWorld에서 제공하는 3차원 공간정보를 이용하여 건물의 높이 맵을 포함한 가상환경 데이터 셋을 구축하고, 높이맵과 딥러닝을 이용한 새로운 그림자 탐지 방법을 제안한다. 실험 결과에 의하면, 높이맵을 사용했을 때 기존 방법보다 그림자 탐지 에러율이 감소한 것을 확인할 수 있다.

CNN 기반 딥러닝을 이용한 인공지지체의 외형 변형 불량 검출 모델에 관한 연구 (A Study on Shape Warpage Defect Detecion Model of Scaffold Using Deep Learning Based CNN)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.99-103
    • /
    • 2021
  • Warpage defect detecting of scaffold is very important in biosensor production. Because warpaged scaffold cause problem in cell culture. Currently, there is no detection equipment to warpaged scaffold. In this paper, we produced detection model for shape warpage detection using deep learning based CNN. We confirmed the shape of the scaffold that is widely used in cell culture. We produced scaffold specimens, which are widely used in biosensor fabrications. Then, the scaffold specimens were photographed to collect image data necessary for model manufacturing. We produced the detecting model of scaffold warpage defect using Densenet among CNN models. We evaluated the accuracy of the defect detection model with mAP, which evaluates the detection accuracy of deep learning. As a result of model evaluating, it was confirmed that the defect detection accuracy of the scaffold was more than 95%.

상황인식 기반 클러스터링의 적응적 자율 학습 분할 알고리즘 (Context-awareness Clustering with Adaptive Learning Algorithm)

  • 전일규;이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.612-614
    • /
    • 2022
  • 본 논문은 이동 노드간 클러스터링을 함에 있어 보다 효율적인클러스터링을 제공하고 유지하기 위한 딥러닝의 자율학습에 따른 군집적 알고리즘을 제안한다. 대부분 이동 노드의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 새롭게 입력되거나 변경된 데이터가 비교정보에서 오염된 정보로 분류될 경우 기존 분류된 클러스터링으로부터 오염된 정보로 이해되어 군집성을 저하시키는 요인으로 작용 할 수가 있다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 학습 모델을 제시 한다.

  • PDF

효과적인 학습을 위한 메타인지 기반의 온라인 학습 도구 웹사이트 구축 (Development of Metacognitive-Based Online Learning Tools Website for Effective Learning)

  • 이현준;빈기범;김은서;문일영
    • 실천공학교육논문지
    • /
    • 제14권2호
    • /
    • pp.351-359
    • /
    • 2022
  • 본 논문에서는 학습자들의 효율적인 학습을 돕는 온라인 학습 도구 애플리케이션을 웹사이트로 제공하고자 한다. 인출, 체계화, 메타인지, 이 세 가지 측면에서 학습자들의 학습 효율을 어떻게 향상시킬 수 있는지에 대해 논의하고자 하며, 본 웹 서비스를 통해 학습자는 플래시 카드 기반의 인출 학습법으로 학습을 진행할 수 있다. 이때, 합성 패턴(Composite Pattern)을 사용하여 플래시 카드를 Directory-File System과 유사한 형태로 관리하는 방법에 대해 서술한다. 학습자는 플래시 카드를 마인드맵으로 변환하여 지식을 체계적으로 정리할 수 있다. 학습자의 학습진행도에 따라 마인드맵의 색상이 달라지며, 학습자는 자신이 무엇을 알고 무엇을 모르는 지 색상을 통해 쉽게 인지할 수 있다. 이때, 학습진행도를 판단하고 예측하는 알고리즘의 정확도를 향상시키기 위한 딥 러닝 모델 구축을 제안한다.

하위 훈련 성과 융합을 위한 순환적 계층 재귀 모델 (A Model of Recursive Hierarchical Nested Triangle for Convergence from Lower-layer Sibling Practices)

  • 문효정
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.415-423
    • /
    • 2018
  • 최근, 컴퓨터 분야의 기계 학습(Machine Learning)과 딥러닝(Deep Learning) 등 컴퓨터 관련 학습이 각광을 받고 있다. 이들은 인공 신경망(Artificial Neural Network)을 이용하여 가장 하위 레벨로부터 학습을 시작하여, 최상위 레벨까지 그 결과를 전달하여 최종 결과를 산출하는 방식이다. 하위레벨로부터의 체계적인 학습을 통한 효과적인 성장 및 교육 방안에 대한 연구는 다양한 분야에서 이루어지고 있으나, 체계적인 규칙과 방법에 기반한 모델은 찾아보기가 힘들다. 이에, 본 논문에서는 성장 및 융합 모델인, TNT 모델(Transitive Nested Triangle Model)을 처음으로 제안한다. 제안하는 모델은 기하학적인 형태를 통해 형성된 각 기능들이 유기적 계층 관계를 형성하여, 상위로 성장 및 융합하면서, 그 결과가 반복 사용되는 순환적 재귀 모델이다. 즉, '수평적 형제 병합에 이은 상위로의 융합(Horizontal Sibling Merges and Upward Convergence)'의 분석적 방법이다. 이러한 모델은 공학, 디지털공학, 인문학, 예술학 등에 모두 적용될 수 있는 기본기적 이론으로, 본 연구에서는 제안하는 TNT 모델을 설명하는 것에 그 초점을 둔다.

고위험 현장의 안전관리를 위한 AI 클라우드 플랫폼 설계 (A Design of AI Cloud Platform for Safety Management on High-risk Environment)

  • 김기봉
    • 미래기술융합논문지
    • /
    • 제1권2호
    • /
    • pp.01-09
    • /
    • 2022
  • 최근 기업과 공공기관에서 안전 이슈는 더는 미룰 수 있는 상황이 아니며, 대형 안전사고가 발생했을 때 직접적인 금전적 손실뿐 아니라 해당 기업 및 공공기관에 대한 사회적 신뢰가 함께 떨어지는 간접적인 손실도 매우 커진다. 특히 사망 사고의 경우는 더욱 피해가 심각하다. 이에 따라 기업 및 공공기관은 산업 안전 교육과 예방에 대한 투자를 확대함에 따라, 고위험 상황이 존재하는 산업현장에서 사용자 행동반경에 영향을 받지 않고 안전관리 서비스가 가능한 개방형 AI 학습모델 생성 기술, 에지단말간 AI협업 기술, 클라우드-에지단말 연동 기술, 멀티모달 위험상황 판단기술, AI 모델 학습 지원 기술을 이용한 시스템 개발이 이루어지고 있다. 특히 인공지능 기술의 발전과 확산으로 안전 이슈에도 해당 기술을 적용하기 위한 연구가 활발해지고 있다. 따라서 본 논문에서는 고위험 현장 안전관리를 위해 AI 모델 학습 지원이 가능한 개방형 클라우드 플랫폼 설계 방안을 제시하였다.

Vision Transformer를 이용한 UAV 영상의 벼 도복 영역 진단 (Diagnosis of the Rice Lodging for the UAV Image using Vision Transformer)

  • 명현정;김서정;최강인;김동훈;이광형;안형근;정성환;김병준
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.28-37
    • /
    • 2023
  • 쌀 수확량 감소에 크게 영향을 주는 것은 집중호우나 태풍에 의한 도복 피해이다. 도복 피해 면적 산정 방법은 직접 피해 지역을 방문하는 현장 조사를 기반으로 육안 검사 및 판단하여 객관적인 결과 획득이 어렵고 많은 시간과 비용이 요구된다. 본 논문에서는 무인 항공기로 촬영된 RGB 영상을 Vision Transformer 기반 Segformer을 활용한 벼 도복 영역 추정 및 진단을 제안한다. 제안된 방법은 도복, 정상, 그리고 배경 영역을 추정하고 종자관리요강 내 벼 포장 검사를 통해 도복률을 진단한다. 진단된 결과를 통해 벼 도복 피해 분포를 관찰할 수 있게 하며, 정부 보급종 포장 검사에 활용할 수 있다. 본 연구의 벼 도복 영역 추정 성능은 평균 정확도 98.33%와 mIoU 96.79%의 성능을 나타내었다.

사용자 사전과 형태소 토큰을 사용한 트랜스포머 기반 형태소 분석기 (A Morpheme Analyzer based on Transformer using Morpheme Tokens and User Dictionary)

  • 김동현;김도국;김철희;신명선;서영덕
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.19-27
    • /
    • 2023
  • 형태소는 한국어에서 의미를 가진 최소단위이기 때문에, 한국어 언어모델의 성능을 높이기 위해서는 정확한 형태소 분석기의 개발이 필요하다. 기존의 형태소 분석기는 대부분 어절 단위 토큰을 입력 값으로 학습하여 형태소 분석 결과를 제시한다. 하지만 한국어의 어절은 어근에 조사나 접사가 부착된 형태이기 때문에 어근이 같은 어절이어도 조사나 접사로 인해 의미가 달라지는 성향이 있다. 따라서 어절 단위 토큰을 사용하여 형태소를 학습하면 조사나 접사에 대한 오분류가 발생할 수 있다. 본 논문에서는 형태소 단위의 토큰을 사용하여 한국어 문장에 내재된 의미를 과악하고, Transformer를 사용한 시퀀스 생성 방식의 형태소 분석기를 제안한다. 또한, 미등록 단어 문제를 해결하기 위해 학습 말뭉치 데이터를 기반으로 사용자 사전을 구축하였다. 실험 과정에서 각 형태소 분석기가 출력 한 형태소와 품사 태그를 함께 정답 데이터와 비교하여 성능을 측정하였으며, 실험 결과 본 논문에서 제시한 형태소 분석기가 기존 형태소 분석기에 비해 성능이 높음을 증명하였다.