• Title/Summary/Keyword: 딤플 패턴

Search Result 14, Processing Time 0.021 seconds

A Study on Friction Characteristics According to Micro-dimple Patterns (마이크로 딤플 패턴에 따른 마찰특성에 관한 연구)

  • Hwang, Nam-Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.124-130
    • /
    • 2015
  • The purpose of this study is to investigate friction characteristics according to micro-dimple patterns. The surface texturing of micro-dimple patterns was tested to examine the friction of pin-on-disk using flat-on-flat contact geometry. The patterns of both dimple circle and groove pattern were adopted to carry out the effect of those ones. In the low loads, such as 13.8N and 27.7N, the friction coefficients of groove pattern were lower than those of dimple circle pattern. In many other comparisons of normal loads, the groove pattern had lower friction forces, which showed the effect of surface texturing. The relationship between sliding time and friction forces showed that the increase of friction forces of groove pattern were relatively lower than those of dimple pattern. In conclusion, the dimple patterns of dimple-circle pattern and groove pattern strongly contributed to reducing the friction between contacting materials.

Frictional Characteristics of Silicon Surface with Micro-dimple Pattern (딤플 패턴이 있는 실리콘 표면의 마찰특성)

  • Yoo, Shin Sung;Heo, Yoon-Young;Kim, Dae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.451-457
    • /
    • 2014
  • Surface roughness of mechanical components is an important factor which affects the tribological phenomena. Various surface patterns have been applied to surfaces to improve the tribological characteristics of mechanical components. In this work, the friction reduction effect of micropatterns on silicon was investigated. For this purpose, micro-dimple patterns were fabricated on silicon wafer by DRIE process. In the friction experiments silicone oil was used as lubricant. Also, the lubricant was cleaned to simulate a lubricant depleted condition. In depleted lubricated condition, friction coefficient of micro-pattern specimens was lower than specimens without micro-patterns. It was found that friction reduction effect of micro-pattern could be successfully maintained even after cleaning the lubricant on the surface.

A study on lubrication Properties of a Dimple Pattern using an Average Flow Analysis with a Contact Model of Asperities (돌기 접촉 모델과 평균 유동 분석을 이용한 딤플 패턴의 윤활 특성에 관한 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Li, Liang;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.41-49
    • /
    • 2016
  • To evaluate lubrication properties by surface roughness under boundary and mixed lubrication, a new approach is suggested by both asperity flow and contact with stochastic characteristics. Many researchers already have studied the effect of surface roughness on flow. But, it has become important to research of the phenomenon of asperities contact in surfaces because the growth of asperities contact area under heavy load conditions. In this paper, flow factors in the average flow model derived by Patir and Cheng were used, and a multi-asperity contact model was included to calculate lubrication properties of a surface with a randomly generated rough surface. A numerical analysis using the average Reynolds equation with both the average flow model and the asperity contact model was conducted, and the results were compared with those from previous research. The results showed that the influence of asperities on lubrication and the friction coefficient changed rapidly on application of contact model.

Sliding Friction Properties of Laser Surface Dimple Patterned on PMMA under Saline Lubricated (레이저 표면 딤플 패턴된 PMMA 소재 표면의 식염수 윤활 하에서의 미끄럼 마찰특성)

  • Dongho Hyun;Younghun Chae;Da-I Jung
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.148-153
    • /
    • 2023
  • Laser surface dimple patterning is a method of laser surface texturing to reduce lubrication sliding friction. The dimple pattern improves friction properties by reserving lubricant and trapping worn particles. This surface texturing technology can reduce coefficients of friction and extend the service life by applying a uniform load to the surface of the material. This study investigates the friction properties using PMMA, a highly compatible polymer material, as a specimen. We observe the friction properties of untextured specimens by processing specimens with dimple pattern densities of 5 and 10 on the surface area using laser. Dimple pattern density affects the coefficient of friction. We present the following friction property results using a pin-on-disc sliding friction test under saline lubrication. The coefficients of friction for the dimple patterned specimens are lower than those for the untextured specimens. As the normal load and sliding speed increase, the coefficients of friction of the dimple pattern specimens decrease differently from those of the untextured specimens. The specimen with a dimple pattern density of 5 at a normal load of 24.5 N and a sliding speed of 0.22 m/s has the best friction properties. Notably, different friction properties are exhibited depending on the dimple pattern densities.

A Study on the Flow Characteristics of Aircraft Wing Surface with Various Dimple Patterns (익형 표면의 딤플 형상변화에 따른 유동특성 연구)

  • Hong, Woo;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.54-59
    • /
    • 2012
  • In order to have the high efficiency of aircraft wing and to improve the energy efficiency in field of eco-friendly transportation, the performance characteristics of the aircraft wing were studied with the change of lift to drag ratio through the CFD analysis. The design process was focused on generating the high lift force and low drag force as the lift to drag ratio was increased. In this paper, various dimple patterns were numerically designed to investigate the flow characteristics. Hexagon-and circle-shaped dimples, dimple distance and position were changed as the artificial conditions. The numerical analyses were conducted by using the commercial code, ANSYS CFX. Numerical results dependent on the turbulence intensity and lift to drag ratio distribution were graphically depicted for various dimple patterns.

Evaluation of Sliding Friction Properties of Laser Surface Texturing Dimple Pattern with DLC Coating under GaInSn Liquid Metal Lubricant (액체금속(GaInSn)윤활하에서 DLC(ta-C) 코팅된 레이저 표면 텍스쳐링 딤플패턴의 미끄럼 마찰특성평가)

  • Kwon, Gyubin;Jang, Youngjun;Chae, Younghun
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.106-111
    • /
    • 2021
  • There are several studies on reducing the friction that occurs on the relative sliding contact surface of moving parts under extreme environments. In particular, a solid lubricated bearing is studied to solve the tribological problem with friction reduction and durability parts using solid lubricants (lead or silver) in a vacuum atmosphere. Galinstan is mainly used as a liquid metal lubricant, but it is inevitable to have limited tribological applications owing to its high coefficient of friction. Many researchers work on surface texturing for surface modification and precision processing methods. To increase durability and low friction, DLC coating with hydrophobicity is applied on the contact surface texture. Therefore, using an untextured specimen, a dimple specimen, and a DLC-coated dimple specimen under liquid metal lubrication, this paper presents the following experimental sliding friction characteristics in the sliding friction test. 1) The average coefficient of friction of the DLC-coated dimple specimen and dimple specimen are lower compared to that of a non-patterned specimen. 2) In the DLC-coated dimple specimens, the average coefficient of friction changes according to the change in the dimple density. 3) DLC-coated dimple specimens with a density of 12.5 have the lowest average coefficient of friction under 41.6 N of normal load and 143.3 RPM.

Friction Characteristics of W100×L25 Micro Ellipse Type Pattern (W100×L25 마이크로 타원형 딤플패턴의 마찰특성)

  • Choi, Won-Sik;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Kim, Jong-Sun;Park, Dae-Young;Chae, Young-Hoon
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • In this paper, we investigated the friction characteristics of $W100^{\circ}{\o}L25m$ ellipse type surface pattern, on bearing steel. These characteristics are researched by utilizing a pin-on-disk wear test machine, under various velocities and other conditions. The reduction of friction is a necessary requirement for the improved efficiency of industrial parts. As the speed increases, there is a decrease in the effect of the dimple of friction characteristic in low velocity, with substantially little change to density. Conversely, as the load increases, the test direction of ellipse type dimple pattern, resulting in a difference in the texture of these two components. At a dimple density of 7.5% the friction characteristic is easily demonstrated, with a consistent change in both speed and load.

An Adaptive Multi-Level Thresholding and Dynamic Matching Unit Selection for IC Package Marking Inspection (IC 패키지 마킹검사를 위한 적응적 다단계 이진화와 정합단위의 동적 선택)

  • Kim, Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.245-254
    • /
    • 2002
  • IC package marking inspection system using machine vision locates and identifies the target elements from input image, and decides the quality of marking by comparing the extracted target elements with the standard patterns. This paper proposes an adaptive multi-level thresholding (AMLT) method which is suitable for a series of operations such as locating the target IC package, extracting the characters, and detecting the Pinl dimple. It also proposes a dynamic matching unit selection (DMUS) method which is robust to noises as well as effective to catch out the local marking errors. The main idea of the AMLT method is to restrict the inputs of Otsu's thresholding algorithm within a specified area and a partial range of gray values. Doing so, it can adapt to the specific domain. The DMUS method dynamically selects the matching unit according to the result of character extraction and layout analysis. Therefore, in spite of the various erroneous situation occurred in the process of character extraction and layout analysis, it can select minimal matching unit in any environment. In an experiment with 280 IC package images of eight types, the correct extracting rate of IC package and Pinl dimple was 100% and the correct decision rate of marking quality was 98.8%. This result shows that the proposed methods are effective to IC package marking inspection.

Friction Characteristics of CNx Coated Dimple Pattern with Hexagonal Array (CNx 코팅된 육각대열 딤플패턴의 마찰특성)

  • Choi, Won-Sik;Umehara, Noritsugu
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.264-268
    • /
    • 2011
  • In this study, we examined the friction characteristics of a dimple pattern on a carbon nitride coating. The study was conducted with a hexagonal array 40 ${\mu}m$ dimple pattern on a steel bearing containing a CNx coating. The area density of the dimple patterns were varied between 5% and 25%, the speed was varied from 0.06-0.26 m/s, and the load was varied between 20-100N. In general, we found that as the velocity increased, the friction coefficient increased. Furthermore, the friction coefficient was lowest at a load of 40N. The friction coefficient of the non-coated specimen was 0.025-0.15; on the other hand, the friction coefficient of the coated specimen was 0.002-0.02. Thus, we determined that the coated materials could reduce the friction coefficient by a factor of 7.5.