• Title/Summary/Keyword: 딤플링

Search Result 11, Processing Time 0.03 seconds

Optimal Design of a Satellite Module Considering Local Stabilities (국부 안정성을 고려한 인공위성 모듈의 구조 최적설계)

  • Park,Jeong-Seon;Im,Jong-Bin;Kim,Jin-Hui;Jin,Ik-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.36-43
    • /
    • 2003
  • In this study, a satellite payload module was optimized by considering local stabilities. As design constraints in the satellite structure, local instabilities such as wrinkling, dimpling, crippling for honeycomb structures and crippling failure mode for beams were considered in addition to frequency and stress constraints. The constraints for the local instabilities (uncommon in general structures) were taken for the optimization of a satellite structures under severe launching environments. The analysis was performed combining the finite element analysis and optimization program. From the optimization results, it was found that frequency, crippling and wrinkling were the most critical constraints to achieve the design goals. Also, the importance of each design variable was estimated. Finally, the optimum design of the payload module was achieved for various design constraints and design parameters.

Lubrication Characteristics of Micro-Textured Slider Bearing: Effect of Dimple Density (Micro-Texturing한 Slider Bearing의 윤활특성 : 딤플 밀도의 영향)

  • Park, Tae Jo;Lee, Joon Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.437-442
    • /
    • 2013
  • In recent times, surface texturing methods have been widely applied to reduce friction and improve the reliability of machine components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, a numerical analysis is carried out to investigate the effect of uniformly spaced hemispherical dimples on the lubrication characteristics of a slider bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The pressure distributions, load capacity, leakage flowrate, and friction force are strongly affected by the dimple diameter and the number of dimples. In particular, the load capacity and friction force decrease linearly with the dimple density whereas the leakage increases. These results can be used for designing the optimum dimple characteristics in order to improve the lubrication performance of slider bearings, for which further studies are required.

Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques (신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계)

  • Shin, Dong-Yoon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.39-46
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

Design Optimization of a Channel Roughened by Dimples Using Weighted Average Surrogate Model (가중평균 대리모델을 사용한 딤플 유로의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • Staggered dimples printed on opposite walls of an internal cooling channel are formulated numerically and optimized to enhance heat transfer performance. Nusselt number and friction factor based objectives are considered and a weighted average surrogate model is used to approximate the data generated by numerical simulation. The dimpled channel shape is defined by three geometric design variables, and the design point within design space are selected using Latin hypercube sampling. A weighted-sum method for multi-objective optimization is applied to integrate multiple objectives into a single objective. By the optimization, the objective function value is improved largely and heat transfer rate is increase much higher than pressure loss increase due to shape deformation. Channel with vertically non-symmetric optimum dimples is tested and found that the best appears if dimples on opposite wall are displaced by one quarter of dimple spacing.

Analyzing Friction Coefficient and Wettability of Micro-Dimple Fabricated Using Elliptical Vibration Texturing Method (이중 주파수 타원형 진동 궤적법 기반 마이크로 딤플의 마찰계수 및 습윤성 분석)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2020
  • Surface texturing of micro-dimples has been used in many manufacturing industries to reduce friction between two sliding contacted surfaces. Surface texturing decreases the frictional force owing to minimizing of the sliding contact area. In this paper, micro-dimples have been fabricated on an Al6061-T6 surface using a two-frequency elliptical vibration texturing (TFEVT) method. A high-frequency of 18 kHz and low-frequency of 250 Hz were applied to an elliptically-vibrated tool holder. The Stribeck curve was plotted to analyze the friction coefficient trends. Furthermore, the representative wetting index, such as the water contact angle (WCA), was measured by considering the friction coefficient. WCA is associated with micro-dimple density and associated parameters. Consequently, the dimpled surfaces with a low friction coefficient exhibited a relatively high WCA in the feed direction. According to the Stribeck curve, the dimpled surfaces demonstrate superior friction performance for mixed-film lubrication compared to the non-textured surface.

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

Characterization of Elliptical Dimple Fabricated with Dual Frequency Vibration Assisted Machining (이중 주파수 지원 절삭으로 가공된 타원형 딤플의 특성)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Surface texturing is a promising route to reduce the friction forces between two surfaces in sliding contact. To this end, the fabrication of micro dimples is one of the most widely used surface texturing methods. According to published results, textured surfaces with elliptical micro dimples offer the best friction performance. Therefore, we fabricated elliptical micro dimples on carbon steel (SM45C) by using dual frequency vibration assisted machining. High and low frequencies of 16.3 kHz and 230 Hz were applied to the 3D resonant elliptical vibrator. The 3D resonant elliptical vibrator with a triangular cubic boron nitride insert was assembled on a computer numerically controlled turning lathe. Oval micro dimples of various profiles were manufactured on carbon steel. In terms of the profile of the elliptical micro dimples, the experimental results indicated that the average micro dimple width and depth were 112 ㎛ and 7.7 ㎛. These dimensions are closely related to the cutting conditions and can be easily controlled.

Sliding Friction Properties of Laser Surface Dimple Patterned on PMMA under Saline Lubricated (레이저 표면 딤플 패턴된 PMMA 소재 표면의 식염수 윤활 하에서의 미끄럼 마찰특성)

  • Dongho Hyun;Younghun Chae;Da-I Jung
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.148-153
    • /
    • 2023
  • Laser surface dimple patterning is a method of laser surface texturing to reduce lubrication sliding friction. The dimple pattern improves friction properties by reserving lubricant and trapping worn particles. This surface texturing technology can reduce coefficients of friction and extend the service life by applying a uniform load to the surface of the material. This study investigates the friction properties using PMMA, a highly compatible polymer material, as a specimen. We observe the friction properties of untextured specimens by processing specimens with dimple pattern densities of 5 and 10 on the surface area using laser. Dimple pattern density affects the coefficient of friction. We present the following friction property results using a pin-on-disc sliding friction test under saline lubrication. The coefficients of friction for the dimple patterned specimens are lower than those for the untextured specimens. As the normal load and sliding speed increase, the coefficients of friction of the dimple pattern specimens decrease differently from those of the untextured specimens. The specimen with a dimple pattern density of 5 at a normal load of 24.5 N and a sliding speed of 0.22 m/s has the best friction properties. Notably, different friction properties are exhibited depending on the dimple pattern densities.

Evaluation of Sliding Friction Properties of Laser Surface Texturing Dimple Pattern with DLC Coating under GaInSn Liquid Metal Lubricant (액체금속(GaInSn)윤활하에서 DLC(ta-C) 코팅된 레이저 표면 텍스쳐링 딤플패턴의 미끄럼 마찰특성평가)

  • Kwon, Gyubin;Jang, Youngjun;Chae, Younghun
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.106-111
    • /
    • 2021
  • There are several studies on reducing the friction that occurs on the relative sliding contact surface of moving parts under extreme environments. In particular, a solid lubricated bearing is studied to solve the tribological problem with friction reduction and durability parts using solid lubricants (lead or silver) in a vacuum atmosphere. Galinstan is mainly used as a liquid metal lubricant, but it is inevitable to have limited tribological applications owing to its high coefficient of friction. Many researchers work on surface texturing for surface modification and precision processing methods. To increase durability and low friction, DLC coating with hydrophobicity is applied on the contact surface texture. Therefore, using an untextured specimen, a dimple specimen, and a DLC-coated dimple specimen under liquid metal lubrication, this paper presents the following experimental sliding friction characteristics in the sliding friction test. 1) The average coefficient of friction of the DLC-coated dimple specimen and dimple specimen are lower compared to that of a non-patterned specimen. 2) In the DLC-coated dimple specimens, the average coefficient of friction changes according to the change in the dimple density. 3) DLC-coated dimple specimens with a density of 12.5 have the lowest average coefficient of friction under 41.6 N of normal load and 143.3 RPM.

Friction Characteristics of Micro-scale Dimple Pattern under Mixed and Hydrodynamic Lubrication Condition (혼합 및 유체윤활하에서 Micro-Scale Dimple Pattern의 마찰특성)

  • Chae Young-Hun;Kim Seock-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.188-193
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.