• Title/Summary/Keyword: 디지털 엑스선 장비

Search Result 6, Processing Time 0.016 seconds

콘텐츠라인-시큐리티월드엑스포2005 개막

  • Gwon, Gyeong-Hui
    • Digital Contents
    • /
    • no.5 s.144
    • /
    • pp.100-101
    • /
    • 2005
  • ‘시큐리티월드엑스포2005’가 지난달 19일부터 21일까지 3일간 삼성동 코엑스에서 열렸다. 정보통신부가 주최하고 전자신문사가 주관한 이번 행사에는 영상보안·생체인식·무인 경비 시스템∙네트워크 보안 등 다양한 솔루션이 대거 선을 보였다. IP서베일런스와 여러 기능을 탑재한 다중 보안 시스템 등 차세대 디지털 보안장비들도 전시됐다.

  • PDF

A Study on Bismuth tri-iodide for X-ray direct and digital imagers (직접방식 엑스선 검출기를 위한 $BiI_3$ 특성 연구)

  • Lee, S.H.;Kim, Y.S.;Kim, Y.B.;Jung, S.H.;Park, J.K.;Jung, W.B.;Jang, M.Y.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.27-31
    • /
    • 2009
  • Now a days, the Medical X-ray equipments has become digitalized from analog type such as film, cassette to CR, DR. And many scientists are still researching and developing the Medical X-ray equipment. In this study, we used the Bismuth tri-iodide to conversion material for digital X-ray equipments and we couldn't get the satisfying result than previous study, but it opened new possibility to cover the disadvantage of a-Se is high voltage aplly and difficultness of make. In this paper, we use $BiI_3$ powder(99.99%) as x-ray conversion material and make films that have thickness of 200um and the film size is $3cm{\times}3cm$. Also, we deposited an ITO(Indium Tin Oxide) electrode as top electrode and bottom electrode using a Magnetron Sputtering System. To evaluate a characteristics of the produced films, an electrical and structural properties are performed. Through a SEM analysis, we confirmed a surface and component part. And to analyze the electrical properties, darkcurrent, sensitivity and SNR(Signal to Noise Ratio) are measured. Darkcurrent is $1.6nA/cm^2$ and sensitivity is $0.629nC/cm^2$ and this study shows that the electrical properties of x-ray conversion material that made by screen printing method are similar to PVD method or better than that. This results suggest that $BiI_3$ is suitable for a replacement of a-Se because of the reduced manufacture processing and improved yield.

  • PDF

Analysis of Noise Power Spectrum According to Flat-Field Correction in Digital Radiography (디지털 의료영상에서 Flat-Field 보정에 따른 Noise Power Spectrum 분석)

  • Lee, Meena;Kwon, Soonmu;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.227-232
    • /
    • 2013
  • The pixels used in a digital X-ray detector have different sensitivities and offset values. A non-uniform image is consequently obtained. Flat-field correction was introduced to resolve this problem and carried out image preprocessing in a digital imaging system. Nevertheless, the non-uniform images caused by several reasons have been being occasionally acquired. In this study, the non-uniform images acquired in digital imaging systems were applied to flat-field correction, and NPSs were calculated and analyzed with those images before and after correction. It was confirmed that low frequency noise were effectively eliminated.

Optimization of Tube Voltage according to Patient's Body Type during Limb examination in Digital X-ray Equipment (디지털 엑스선 장비의 사지 검사 시 환자 체형에 따른 관전압 최적화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.379-385
    • /
    • 2017
  • This study identifies the optimal tube voltages depending on the changes in the patient's body type for limb tests using a digital radiography (DR) system. For the upper-limp test, the dose area product (DAP) was fixed at $5.06dGy{\ast} cm^2$, and for the lower-limb test, the DAP was fixed at $5.04dGy{\ast} cm^2$. Afterwards, the tube voltage was changed to four different stages and the images were taken three times at each stage. The thickness of the limbs was increased by 10 mm to 30 mm to change in the patient's body type. For a quantitative evaluation, Image J was used to calculate the contrast to noise ratio (CNR) and signal to noise ratio (SNR) among the four groups, according to the tube voltage. For statistical testing, the statistically significant differences were analyzed through the Kruskal-Wallis test at a 95% confidence level. For the qualitative analysis of the images, the pre-determined items were evaluated based on a 5-point Likert scale. In both upper-limb and lower-limb tests, the more the tube voltage increased, the more the CNR and SNR of the images decreased. The test on the changes depending on the patient's body shape showed that the more the thickness increased, the more the CNR and SNR decreased. In the qualitative evaluation on the upper limbs, the more the tube voltage increased, the more score increased to 4.6 at the maximum of 55kV and 3.6 at 40kV, respectively. The mean score for the lower limbs was 4.4, regardless of the tube voltage. The more either the upper or lower limbs got thicker, the more the score generally decreased. The score of the upper limps sharply dropped at 40kV, whereas that of the lower limps sharply dropped at 50kV. For patients with a standard thickness, the optimized images can be obtained when taken at 45kV for the upper limbs, and at 50kV for the lower limbs. However, when the thickness of the patient's limbs increases, it is best to set the tube voltage at 50 kV for the upper limbs and at 55 kV for the lower limbs.

Change of MTF for Sampling Interval in Digital Detector (디지털 검출기에서 샘플링 간격에 따른 MTF의 변화)

  • Cho, Hyungwook;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.5
    • /
    • pp.225-230
    • /
    • 2014
  • Assessments of medical image was improved in accordance with development of medical imaging systems. One of them is edge method to determining MTF(Modulation Transfer Function) based on the Fujita method. Fujita was reduced sampling interval used slightly angulated slit to the direction of pixel array and composited finely sampled LSF to determine presampling MTF. In this study, we investigate the effect of sampling interval on the MTF under a digital imaging system by changing wire angle. The wire method was equivalent to the slit method except signal appearance. A Simens's MAMMOMAT Inspiration with $0.085{\times}0.085mm^2$ pixel size made by amorphous selenium was used and 96% accuracy on MTF in twice sampling interval compared with Fujita was obtained. However, three times of sampling interval showed 93% accuracy on 50% of MTF and 85% accuracy on 10% of MTF.

A Study of Guide System for Cerebrovascular Intervention (뇌혈관 중재시술 지원 가이드 시스템에 관한 연구)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Yoon, Kwon-Ha;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • Due to the recent advancement in digital imaging technology, development of intervention equipment has become generalize. Video arbitration procedure is a process to insert a tiny catheter and a guide wire in the body, so in order to enhance the effectiveness and safety of this treatment, the high-quality of x-ray of image should be used. However, the increasing of radiation has become the problem. Therefore, the studies to improve the performance of x-ray detectors are being actively processed. Moreover, this intervention is based on the reference of the angiographic imaging and 3D medical image processing. In this paper, we propose a guidance system to support this intervention. Through this intervention, it can solve the problem of the existing 2D medical images based vessel that has a formation of cerebrovascular disease, and guide the real-time tracking and optimal route to the target lesion by intervention catheter and guide wire tool. As a result, the system was completely composed for medical image acquisition unit and image processing unit as well as a display device. The experimental environment, guide services which are provided by the proposed system Brain Phantom (complete intracranial model with aneurysms, ref H+N-S-A-010) was taken with x-ray and testing. To generate a reference image based on the Laplacian algorithm for the image processing which derived from the cerebral blood vessel model was applied to DICOM by Volume ray casting technique. $A^*$ algorithm was used to provide the catheter with a guide wire tracking path. Finally, the result does show the location of the catheter and guide wire providing in the proposed system especially, it is expected to provide a useful guide for future intervention service.