• Title/Summary/Keyword: 디지털 신경시스템

Search Result 121, Processing Time 0.027 seconds

A Design and Implementation Digital Vessel Bio Emotion Recognition LED Control System (디지털 선박 생체 감성 인식 LED 조명 제어 시스템 설계 및 구현)

  • Song, Byoung-Ho;Oh, Il-Whan;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.102-108
    • /
    • 2011
  • The existing vessels lighting control system has several problems, which are complexity of construction and high cost of establishment and maintenance. In this paper, We designed low cost and high performance lighting control system at digital vessel environment. We proposed a system which recognize the user's emotions after obtaining the biological informations about user's bio information(pulse sensor, blood pressure sensor, blood sugar sensor etc) through wireless sensors controls the LED Lights. This system classified emotions using backpropagation algorithm. We chose 3,000 data sets to train the backpropagation algorithm. As a result, obtained about 88.7% accuracy. And the classified emotions find the most appropriate point in the method of controlling the waves or frequencies to the red, green, blue LED Lamp comparing with the 20-color-emotion models in the HP's 'The meaning of color' and control the brightness or contrast of the LED Lamp. In this method, the system saved about 20% of the electricity consumed.

A Construction of HA System that introduce Home Network of PLC base in existing environment (PLC 기반의 Home Network를 기존환경에 바로 도입 가능한 Home Automation System 연구)

  • Shin Kyung-Chul;Oh Young-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.320-328
    • /
    • 2005
  • Government is supporting development of home networking. But, this new system is much expensive to introduce in the home. And limit for establishment is so many in the home. Therefore, in this paper, Present direction of home automation system that can have high efficiency into low expense, induction of automation system is easied in the home. Also, install can be easy and do remote control in PC, HP, PDA because use PLC or HN RF, DB.

  • PDF

Intelligent Balancing Control of Inverted Pendulum on a ROBOKER Arm Using Visual Information (영상 정보를 이용한 ROBOKER 팔 위의 역진자 시스템의 지능 밸런싱 제어 구현)

  • Kim, Jeong-Seop;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.595-601
    • /
    • 2011
  • This paper presents balancing control of inverted pendulum on the ROBOKER arm using visual information. The angle of the inverted pendulum placed on the robot arm is detected by a stereo camera and the detected angle is used as a feedback and tracking error for the controller. Thus, the overall closed loop forms a visual servoing control task. To improve control performance, neural network is introduced to compensate for uncertainties. The learning algorithm of radial basis function(RBF) network is performed by the digital signal controller which is designed to calculate floating format data and embedded on a field programmable gate array(FPGA) chip. Experimental studies are conducted to confirm the performance of the overall system implementation.

Design of the Digital Neuron Processor (디지털 뉴런프로세서의 설계에 관한 연구)

  • Hong, Bong-Wha;Lee, Ho-Sun;Park, Wha-Se
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.12-22
    • /
    • 2007
  • In this paper, we designed of the high speed digital neuron processor in order to digital neural networks. we designed of the MAC(Multiplier and Accumulator) operation unit used residue number system without carry propagation for the high speed operation. and we implemented sigmoid active function which make it difficult to design neuron processor. The Designed circuits are descripted by VHDL and synthesized by Compass tools. we designed of MAC operation unit and sigmoid processing unit are proved that it could run time 19.6 nsec on the simulation and decreased to hardware size about 50%, each order. Designed digital neuron processor can be implementation in parallel distributed processing system with desired real time processing, In this paper.

Human Tracking Technology using Convolutional Neural Network in Visual Surveillance (서베일런스에서 회선 신경망 기술을 이용한 사람 추적 기법)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.173-181
    • /
    • 2017
  • In this paper, we have studied tracking as a training stage of considering the position and the scale of a person given its previous position, scale, as well as next and forward image fraction. Unlike other learning methods, CNN is thereby learning combines both time and spatial features from the image for the two consecutive frames. We introduce multiple path ways in CNN to better fuse local and global information. A creative shift-variant CNN architecture is designed so as to alleviate the drift problem when the distracting objects are similar to the target in cluttered environment. Furthermore, we employ CNNs to estimate the scale through the accurate localization of some key points. These techniques are object-independent so that the proposed method can be applied to track other types of object. The capability of the tracker of handling complex situations is demonstrated in many testing sequences. The accuracy of the SVM classifier using the features learnt by the CNN is equivalent to the accuracy of the CNN. This fact confirms the importance of automatically optimized features. However, the computation time for the classification of a person using the convolutional neural network classifier is less than approximately 1/40 of the SVM computation time, regardless of the type of the used features.

Comparison of Detection Performance of Intrusion Detection System Using Fuzzy and Artificial Neural Network (퍼지와 인공 신경망을 이용한 침입탐지시스템의 탐지 성능 비교 연구)

  • Yang, Eun-Mok;Lee, Hak-Jae;Seo, Chang-Ho
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.391-398
    • /
    • 2017
  • In this paper, we compared the performance of "Network Intrusion Detection System based on attack feature selection using fuzzy control language"[1] and "Intelligent Intrusion Detection System Model for attack classification using RNN"[2]. In this paper, we compare the intrusion detection performance of two techniques using KDD CUP 99 dataset. The KDD 99 dataset contains data sets for training and test data sets that can detect existing intrusions through training. There are also data that can test whether training data and the types of intrusions that are not present in the test data can be detected. We compared two papers showing good intrusion detection performance in training and test data. In the comparative paper, there is a lack of performance to detect intrusions that exist but have no existing intrusion detection capability. Among the attack types, DoS, Probe, and R2L have high detection rate using fuzzy and U2L has a high detection rate using RNN.

Intruder Detection System Based on Pyroelectric Infrared Sensor (PIR 센서 기반 침입감지 시스템)

  • Jeong, Yeon-Woo;Vo, Huynh Ngoc Bao;Cho, Seongwon;Cuhng, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.361-367
    • /
    • 2016
  • The intruder detection system using digital PIR sensor has the problem that it can't recognize human correctly. In this paper, we suggest a new intruder detection system based on analog PIR sensor to get around the drawbacks of the digital PIR sensor. The analog type PIR sensor emits the voltage output at various levels whereas the output of the digitial PIR sensor is binary. The signal captured using analog PIR sensor is sampled, and its frequency feature is extracted using FFT or MFCC. The extracted features are used for the input of neural networks. After neural network is trained using various human and pet's intrusion data, it is used for classifying human and pet in the intrusion situation.

Combining Multiple Classifiers for Automatic Classification of Email Documents (전자우편 문서의 자동분류를 위한 다중 분류기 결합)

  • Lee, Jae-Haeng;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.192-201
    • /
    • 2002
  • Automated text classification is considered as an important method to manage and process a huge amount of documents in digital forms that are widespread and continuously increasing. Recently, text classification has been addressed with machine learning technologies such as k-nearest neighbor, decision tree, support vector machine and neural networks. However, only few investigations in text classification are studied on real problems but on well-organized text corpus, and do not show their usefulness. This paper proposes and analyzes text classification methods for a real application, email document classification task. First, we propose a combining method of multiple neural networks that improves the performance through the combinations with maximum and neural networks. Second, we present another strategy of combining multiple machine learning classifiers. Voting, Borda count and neural networks improve the overall classification performance. Experimental results show the usefulness of the proposed methods for a real application domain, yielding more than 90% precision rates.

A Study on Pathological Pattern Detection using Neural Network on X-Ray Chest Image (신경회로망을 이용한 X-선 흉부 영상의 병변 검출에 관한 연구)

  • 이주원;이한욱;이종회;조원래;장두봉;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.371-378
    • /
    • 2000
  • In this study, we proposed pathological pattern detection system for X-ray chest image using artificial neural network. In a physical examination, radiologists have checked on the chest image projected the view box by a magnifying glass and found out what the disease is. Here, the detection of X-ray fluoroscopy is tedious and time-consuming for human doing. Lowering of efficiency for chest diagnosis is caused by lots mistakes of radiologist because of detecting the micro pathology from the film of small size. So, we proposed the method for disease detection using artificial neural network and digital image processing on a X-ray chest image. This method composes the function of image sampling, median filter, image equalizer used neural network and pattern recognition used neural network. We confirm this method has improved the problem of a conventional method.

  • PDF

A Study on the Age Prediction Model Using ResNet (ResNet을 이용한 나이 예측 모델 연구)

  • Ji-Hun Kim;Young-Tae Shin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.803-806
    • /
    • 2024
  • 본 연구는 디지털 기술과 인공지능의 발전을 배경으로, ResNet 모델을 활용하여 얼굴 인식 및 나이 예측 시스템을 개발하고 평가한다. ResNet의 잔차 학습과 스킵 연결 기능은 깊은 신경망에서 발생할 수 있는 기울기 소실 문제를 해결하여 모델의 학습 효율을 높이는 데 중요한 역할을 한다. 또한 All-Age-Faces Dataset을 이용하여 나이 예측에서 아시아 인종에 대한 편향 없이 고르게 좋은 성능을 보여주는 것을 목표로 한다.