• Title/Summary/Keyword: 디지털변조

Search Result 585, Processing Time 0.028 seconds

TACAN modulation generator for antenna purpose that precisely adjusts factor of modulation (변조도를 정밀하게 조정 하는 TACAN 안테나용 변조신호발생기)

  • Kim, Jong-Won;Son, Kyong-Sik;Lim, Jae-Hyun
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.275-284
    • /
    • 2017
  • TACAN(TACtical Air Navigation) was created to support military aircraft's short range navigation (200~300 mile). TACAN must fulfill a condition of MIL-STD-291C, the U.S. Military Standards, which addresses the sum of 15Hz and 135Hz should be within 55%, following the factor of modulations for both to be $21{\pm}9%$ each. Within the existing TACAN antenna, modulation factor for 15Hz and 135Hz are created differently depending on its diameter, wavelength, angle of gradient, internal modulation method or using frequency code. It brings up a problem where applications needed to be stopped and repaired when modulating signal exceeds the standard of MIL-STD-291C since the existing TACAN antenna does not have coordination function. Hence, plan and produce a modulating signal generator using FPGA, and check the changes in the modulation factor for 15HZ and 135Hz, depending on the values that have been set in each criteria. Moreover, allow the modulating signal generator to be automatically adjusted based on the monitoring signal emitted by antenna, and place alarm sound just in case if it exceeds the standard.

Implementation of Phase-Error Compensation Algorithm in Terrestrial Digital TV Modulator (지상파 디지털 TV 방송용 송신기에서 변조기의 위상오차 보상에 관한 알고리듬 구현)

  • Oh, Inn-Yeal;Yang, Kyung-Seok;Lee, Chul;Mok, Ha-Kyun;Oh, Seong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1156-1164
    • /
    • 1999
  • In this paper, we have studied the 8 YSB (8 Vestigial Side Band) method which is decided as the standard of modulators for next generation digital TV System. In developing digital TV System, one of the difficult problems is how digital signal can be transmitted to the receiver without any phase distortion. But, phase error is liable to occur by imperfect design, circumstance variation and device degradation. These characteristics result in distortion of 1,0 signal of modulator and interference in adjacent channels. In particular, the interference in modulator of a high power amplifier result in serious problems in adjacent channels. Here we analyzed problems of phase error which are occurred when 8 levels digital signals are modulated to If signal. And we suggested phase error compensation algorithm and discussed the results for adaptation of the algorithm

  • PDF

Design of digital communication systems using DCSK chaotic modulation (DCSK 카오스 변조를 이용한 디지털 통신 시스템의 설계)

  • Jang, Eun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.565-570
    • /
    • 2015
  • Spread spectrum communications have increased interest due to their immunity to channel fading and low probability of intercept. One of the limitations of the traditional digital spread spectrum systems is the need for spreading code synchronization. Chaotic communication is the analogue alternative of digital spread spectrum systems beside some extra features like simple transceiver structures. In this paper, This paper was used instead of the digital modulation and demodulation carriers for use in the chaotic signal in a digital communication system among the chaotic modulation schemes, the Differential Chaos Shift Keying(DCSK) is the most efficient one because its demodulator detects the data without the need to chaotic signal phase recovery. Also Implementation of Differential Chaos Shift Keying Communication System Using Matlab/Simulink and the receiver con decode the binary information sent by the transmitter, performance curves of DCSK are given in terms of bit-error probability versus signal to noise ratio with spreading factor as a parameter and we compare it to BPSK modulation.

(Development of A Digital Controller of The Electronic Ballast using High Frequency Modulation Method for The Metal Halide Lamp) (메탈 할라이드 램프용 고주파 변조 방식 전자식 안정기의 디지털 제어기 개발)

  • O, Deok-Jin;Kim, Hui-Jun;Jo, Gyu-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.228-238
    • /
    • 2002
  • This paper presents a digital controller of the electronic ballast using high frequency modulation method for the metal halide lamp. The proposed controller includes the control algorithm for soft starting, no load protection, over current protection and power control. The proposed digital controller, moreover, has the high frequency modulation scheme and the tracking algorithm to avoid acoustic resonance phenomena. For the math production with the low cost using the ASICs (Application Specific Integrated Circuit), the proposed digital controller has been designed with the FPGAs(Field Programmable Gate array) only, without any microprocessor. In this paper, the detail digital control algorithms are described and the experimental results of prototype 150w metal halide electronic ballast are presented.

Interferometric Color Display Using Micromechanically Coupled Digital Mirror Arrays (기계적으로 연동된 디지털 미소거울을 이용한 광간섭형 컬러 디스플레이 구현)

  • Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.487-493
    • /
    • 2012
  • We present interferometric modulators that reproduce RGB colors through the selective actuation of mechanically coupled mirror arrays having identical air gaps. The conventional transmittive interferometric modulators need additional backlights, which leads to high power consumption. The previous reflective interferometric modulators using ambient lights need three different air gaps for reproducing the three RGB colors, thus giving rise to process complexity. For process simplicity, we propose the use of reflective interferometric modulators that are capable of producing green, blue, red, and black colors with the aid of mechanically coupled mirrors with identical air gaps. In an experimental study, the present interferometric modulators reproduce green, blue, and red colors at the switching modes (000), (010), and (101). The spectrum peaks for the colors are measured at the wavelengths $511{\pm}5nm$, $478{\pm}3nm$, and $644{\pm}9nm$, respectively, with the bandwidths being $60{\pm}1nm$, $45{\pm}2nm$, and $105{\pm}4nm$, respectively; further, the maximum intensities of the colors are $77{\pm}5%$, $73{\pm}2%$, and $81{\pm}5%$, respectively. The black spectrum is measured below the intensity of $27{\pm}0%$. Thus, we experimentally demonstrate the color reproduction capability of interferometric modulators fabricated by using a simple process.

Performance and Jitter Effects Analysis of Single Bit Electro-Optical Sigma-Delta Modulators (단일 비트 전자-광학 시그마-델타 변조기의 성능 및 지터 효과 분석)

  • Nam, Chang-Ho;Ra, Sung-Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.706-715
    • /
    • 2012
  • Electro-optical sigma-delta modulators are the core module of digital receiver to digitize wideband radio-frequency signals directly at an antenna. Electro-optical sigma-delta modulators use a pulsed laser to oversample an input radio-frequency signals at two Mach-Zehnder Interferometer(MZI) and shape the quantization noise using a fiber-lattice accumulator. Decimation filtering is applied to the quantizer output to construct the input signal with high resolution. The jitter affects greatly on reconstructing the original input signal of modulator. This paper analyzes the performance of first order single bit electro-optical sigma-delta modulator in the time domain and the frequency domain. The performance of modulator is analyzed by using asynchronous spectral averaging of the reconstructed signal's spectrum in the frequency domain. The reference value of time jitter is presented by analyzing the performance of jitter effects. This kind of jitter value can be used as a reference value on the design of modulators.