• Title/Summary/Keyword: 디젤 무

Search Result 32, Processing Time 0.023 seconds

Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation (금속 나노 촉매를 활용한 선택적 알코올 산화 반응)

  • Hussain, Muhammad Asif;Joseph, Nyanzi;Kang, Onyu;Cho, Young-Hun;Um, Byung-Hun;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.227-238
    • /
    • 2016
  • This review article highlights different types of nano-sized catalysts for the selective alcohol oxidation to form aldehydes (or ketones) with supported or immobilized metal nanoparticles. Metal nanoparticle catalysts are obtained through dispersing metal nanoparticles over a solid support with a large surface area. The nanocatalysts have wide technological applications to industrial and academic fields such as organic synthesis, fuel cells, biodiesel production, oil cracking, energy conversion and storage, medicine, water treatment, solid rocket propellants, chemicals and dyes. One of main reactions for the nanocatalyst is an aerobic oxidation of alcohols to produce important intermediates for various applications. The oxidation of alcohols by supported nanocatalysts including gold, palladium, ruthenium, and vanadium is very economical, green and environmentally benign reaction leading to decrease byproducts and reduce the cost of reagents as opposed to stoichiometric reactions. In addition, the room temperature alcohol oxidation using nanocatalysts is introduced.

Effects of Multiple Stress Factors Including Iron Supply on Cell Growth and Lipid Accumulation in Marine Microalga Dunaliella tertiolecta (해양 미세조류 Dunaliella tertiolecta에서 철 공급을 포함한 다중스트레스 인자가 세포성장 및 지질생산에 미치는 영향)

  • Rizwan, Muhammad;Mujtaba, Ghulam;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.306-312
    • /
    • 2017
  • Changes in the cell growth and lipid accumulation of marine microalga Dunaliella tertiolecta were investigated in response to the combination of different stress factors including the variation of iron supply as a primary stress factor and different options in light irradiation and $CO_2$ supply as a secondary stress factor. High or limited Fe conditions could act as a stress for lipid synthesis. As a secondary stress factor, non-$CO_2$ condition was good for lipid accumulation, but the overall cell growth was sacrificed significantly after a long-time cultivation. Dark condition as a secondary stress factor also favored lipid accumulation and the extent of cell density reduction at the early period in the dark was small compared to other stress conditions. The two-stage cultivation strategy was necessary to maximize lipid production because tendencies of the cell growth and lipid content were not identical under the chosen stress condition. The first stage was for preparing a high cell density under the normal growth-favoring condition and the second stage was the stress condition to induce lipid accumulation in a short time. The short-term (12 h) incubation under the 5X Fe (3.25 mg/L) and dark conditions resulted in the best lipid productivity of 1.44 g/L/d providing 2 g/L inoculum at the second stage.