• Title/Summary/Keyword: 디젤 노즐

Search Result 68, Processing Time 0.031 seconds

An Experimental Study on the Atomization Characteristics in an Intermittent Multi-hole Diesel Spray (간헐 다공 디젤 분무의 미립화 특성에 관한 실험적 연구)

  • 이지근;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.27-34
    • /
    • 2001
  • This experimental study is to investigate the intermittent spray characteristics of the multi-hole diesel nozzle with a 2-spring nozzle holder. Without changing the total orifice exit area, its hole number varied from 3($d_n=0.42mm$) to 8($d_n$=0.25mm). Through the use of the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of the diesel spray injected intermittently from the multi-hole nozzle into the still ambient were measured. And the calculations of time-resolved diameters, SMD and AMD were made. The results can be summarized as follows. The spray of the multi-hole nozzle consisted of three parts. These are the leading edge, the central part and the trailing edge. And most of droplets produced at the trailing edge of spray. In the spray flow field, the measuring position which represented the intermittent spray characteristics well was near the nozzle tip. But at the downstream of the spray, its characteristics disappeared, and spray behavior showed a quasi steady state regardless of the time evolution of the spray. The overall mean SMD of the spray increased with the spray development, and showed their maximum value near 1.5ms regardless of hole number.

  • PDF

Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle (다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향)

  • Sub, Hyun-Kyu;Kim, Jee-Won;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

An Experimental Study on the Measurement of the Droplet-Air Relative Velocity in the Multi-hole Diesel Spray (다공 디젤분무의 액적-공기 상대속도 측정에 관한 실험적 연구)

  • Kweon, M.H.;Shin, S.H.;Lee, J.K.;Kang, S.J.;Rho, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.801-806
    • /
    • 2000
  • This experimental study is to investigate the intermittent spray characteristics of a multi-hole nozzle in a heavy-duty DI diesel engine. Multi 8 hole$(d_n=0.25mm)$, Multi 3 hole$(d_n=0.42)$ and Sing hole nozzle$(d_n=0.25mm)$ were used in this experiment. By using the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of a diesel spray injected intermittently from the multi and the single-hole nozzle into a still ambient were measured. In order to calculate the mean values such as mean velocity, SMD, AMD etc. and to analyze the intermittent characteristics, the time-window of 0.15ms were applied. In the spray, the small droplet$(D<10{\mu}m)$ was regarded as an air flow, and the correlation between the fuel droplet$(10{\mu}m and the air (low was examined. The normalized axial droplet-air relative velocity of the 8 hole, the 3 hole and the single hole nozzle was evaluated as 0.081, 0.067, 0.06 and in case of the radial droplet-air relative velocity, the normalized. value is 0.014, 0.013 and 0.008 respectively.

  • PDF

Combustion Optimization of Diesel 2.0 Liter Class Engine with 8-hole Injector Nozzle (8홀 노즐을 적용한 2리터 급 디젤 엔진 연소 최적화)

  • Kwon, Soon-Hyuk;Kim, Min-Su;Choi, Min-Seon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.73-79
    • /
    • 2008
  • Atomization speed of diesel fuel injected from 8-hole nozzle is faster than that of 7-hole nozzle because the hole diameter of 8-hole nozzle is smaller than that of 7-hole nozzle. But both insufficient distance between the fuel sprays and short penetration of injected sprays through 8-hole nozzle hole cause many harmful effects on combustion. In this study, we installed the 8-hole injectors to diesel 2.0 liter class engine, and optimized in-cylinder swirl and penetration via selecting and matching proper cylinder head and combustion bowl. Through this process, we found out the performance and emission potential of 8-hole nozzle installed engine are better than those of 7-hole nozzle installed one.

A Study on the Emission Reduction and Performance Improvement in a V8 Type TCI D.I. Diesel Engine (V8형 TCI 디젤기관의 배출가스저감 및 성능개선에 관한 연구)

  • Yoon Jun-Kyu;Lim Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.443-452
    • /
    • 2005
  • The purpose of this study is experimentally to analyze the effects of intake port swirl, injection system and turbocharger on the engine performance and the emission characteristics in a V8 type turbocharger intercooler D.I. diesel engine of the displacement 16.7L, and to suggest the improvement of engine performance. Generally to enhance engine power, TCI diesel engine is put to practically use turbocharged intercooler in order to increase volume efficiency which is cooled boost air. As results of considering the factors of the intake port of swirl ratio 2.25, compression ratio 17.5. re-entrant $8.5^{\circ}$ combustion bowl, nozzle hole diameter ${\phi}0.33{\ast}3+{\phi}0.35{\ast}2$. nozzle protrusion 3.18mm, injection timing BTDC $12^{\circ}CA$ and turbocharger(compressor 0.6A/R+46Trim. turbine 1.0 A/R+57Trim) is the best in the full load in the engine performance and the exhaust characteristics of NOx concentration. Therefore. their factors are appropriated as intake system, injection and turbocharger system.

Experimental Study on the Spray Characteristics of the Diesel Single Hole Type Nozzle (디젤단공노즐의 분무특성에 관한 실험적 연구)

  • 안병규;송규근;윤소남;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.764-767
    • /
    • 2003
  • The characteristics of diesel spray have much effect on the engine performances such as power. fuel consumption rate and emissions. Therefore, the measurement of fuel spray characteristics is very important for the improvement of heat engine. The factors which control diesel spray characteristics are injection pressure, ambient temperature and density etc. Spray behaviors are visualized by using the high speed video camera and spray angle, spray penetration are measured. Experimental equations of spray penetration and spray angle were derived by using the experimental results. 1) Ambient temperature and density influence on the characteristics of diesel spray. 2) Experimental equation of spray penetration is expressed as follows 0<t< $t_{b}$ ; $S_1$=11.628$\Delta$ $P^{0.485}$ $\rho$$_{a}$ $^{-0.478}$ $t^{1.337}$, $t_{b}$ <t; $S_2$=7.457$\Delta$ $P^{0.523}$ $\rho$$_{a}$ $^{-0.382}$ $t^{0.548}$ 3) Experimental equation of spray Angie is expressed as follows $T_{a}$ =293K; Tan($\theta$/2)=059($\rho$$_{a}$ / $\rho$$_{f}$ )$^{0.437}$, $T_{a}$ =473K; Tan($\theta$/2)=0588($\rho$$_{a}$ / $\rho$$_{f}$ )$^{0.404}$_{f}$ )$^{0.404}$

  • PDF

Numerical Study on Urea Spraying and Mixing Characteristics with Application of Static Mixer in Marine SCR System (박용 탈질 시스템의 혼합기 적용에 따른 요소수용액 분무 및 혼합특성 수치적 연구)

  • Jang, Jaehwan;Park, Hyunchul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • Among various De-NOx technologies, Urea-based Selective Catalytic Reduction (SCR) systems are known to be the most effective in marine diesel applications. The spraying and mixing behavior of the urea-water solution has a decisive effect on the system's net efficiency. Therefore, in this study, the spray behavior and ammonia uniformity with and without a static mixer were analyzed by CFD in order to optimize the SCR system. The results showed that the static mixer significantly affected the uniformity of velocity and ammonia concentration. Static mixers may be especially suited for marine SCR systems with space constraints.

A Numerical Study on the Basic Design of Scrubber for Marine Diesel Engines (선박 디젤기관 스크러버의 기초설계에 관한 수치적 연구)

  • Lee, Won-Ju;Kim, In-Su;Choi, Yong-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.549-557
    • /
    • 2017
  • Numerical studies have been carried out on scrubbers, which are after-treatment devices to satisfy strengthened emission regulations for sulfur dioxide and particulate matter. We investigated the problems with existing scrubbers through numerical analysis and designed and analyzed a new swirl-type scrubber that could solve these problems. As a result, with the swirl-type scrubber, exhaust gas formed a vortex in the lower part of the device, and some of this gas was released along the guide vane through the bottom surface. In this case, the pressure gradient in the vertical direction was not large, but a pressure difference between the inside and outside of the baffle was generated. The shape of the exhaust gas stream was investigated, and when water was not sprayed, the exhaust gas flowed constantly to the outlet along the guide vane, in contrast to when water was sprayed. It was confirmed that the shape of the flow was influenced by the guide vane, nozzle arrangement and water pressure. In the case of the swirl-type scrubber, impact on engine back-pressure was minimal, because differential pressure at the inlet and outlet was less than half of that with a conventional scrubber.