• Title/Summary/Keyword: 디젤 노즐

Search Result 68, Processing Time 0.031 seconds

A Study on Estimate of Flow Coefficient with Variation of Hole Number in Multi-hole Diesel Nozzle (다공 디젤노즐의 홀수 변화에 따른 우량계수 평가에 관한 연구)

  • 이지근;조원일;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • This experimental study is to investigate the flow characteristics of the multi-hole nozzle used in the fuel injection system of a heavy-duty diesel engine. A multi-hole diesel nozzle with a 2-spring nozzle holder was used in this study and without changing the total orifice exit area, its hole number varied from 3($d_n$=0.42mm) to 8($d_n$=0.25mm). The injection pressure and needle lift were measured and Bosch type injection rates measurement system was used. The discharge flowrates of each orifice in the multi-hole nozzle changed by the flow conditions inside the nozzle sac hole. In case that pump speed and injection quantity were low, the orifice located in the vertex of nozzle tip had a great deal of injection quantity compared with that of others. As the increment of multi-hole number, the injection duration and the mean injection pressure decrease. The mean and peak injection rates, however, increase. Actually, the mean flow coefficient(${C_d}_{(mean)}$) increases, too. The flow coefficient of the multi 8 hole was evaluated as Cd(mean)=0.74 and that is the maximum value among the examined conditions.

  • PDF

Diesel Spray Developement from VCO nozzles for High Pressure Direct-Injection (VCO노즐에서 고압으로 분사되는 디젤분무의 특성)

  • 강진석;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.28-36
    • /
    • 2000
  • Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short, An investigation into various spray characteristics from different holes of VCO(Valve Covered Orifice) nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from multi hole nozzles were measured with back light imaging while the sprays from the other holes are covered by a purpose-built nozzle cap. The investigation manifestly reveals the different spray patterns at the beginning of injection produced by VCO nozzles can be identified as three distinct types with their own macroscopic and microscopic characteristics, while macroscopic non-uniformity disappears at 0.9∼1.0ms from the start of injection.

  • PDF

A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel (바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안)

  • Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Aspect Ratio(Bowl Diameter/Bowl Depth)- (리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -연소실 형상비(Bowl직경/Bowl깊이)의 효과-)

  • Kwon, J.B.;Kim, H.S.;Kwon, I.K.;Oh, K.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.54-62
    • /
    • 1996
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.1.diesel engine. The main factor was the aspect ratio (Bowl Diameter/Bowl Depth) of bowl of combustion chamber, and the measured data include the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber. Experimental results indicate that the effect of dc/H and nozzle protrusion are relatively small and there exists an optimum dc/H according to the combustion conditions. It is also found that the smoke emission is quite sensitive the overall combustion time where the 90 percentage of the combustion heat is released. The smoke mission increases by shortening the 90% combustion time while it decreases by delaying the 90% combustion time.

  • PDF

A Study on Flow Velocity Distribution at Inlet and Exit of Diesel Particulate Filter with L-Shape Inlet Connector Using Automatic Measurement (측정자동화에 의한 입구연결부 형상이 L-형인 디젤매연필터 입.출구에서의 유속 분포에 관한 연구)

  • Lee, Choong-Hoon;Bae, Sang-Hong;Choi, Ung;Lee, Su-Ryong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2007
  • The flow velocity distribution at inlet and exit of Diesel Particulate Filter(DPF) by fabricating L-shape connector with the DPF was measured using a Pitot-tube and 2-D transverse machine. An adaptor designed for making the Pitot tube probe access to the inlet and exit of the DPF was connected with the inlet and exit flange of the DPF, respectively. The Pitot tube which was mounted in the 2-D positioning machine could access to the inlet and exit of the DPF through the rectangular window of the adaptor. The L-shape connector in the DPF inlet has a flow guide which is a perforated steel pipe. The flow velocity distribution at the inlet of the DPF showed a chaotic velocity distribution which is different from that with a diffuser type connector. The velocity distribution at the exit of the DPF showed a crown shape which is similar to that of the diffuser type connector. The velocity distribution at the exit of DPF showed different patterns according to the air flow rate.

Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines (디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석)

  • Kim, Yongrae;Song, Hanho
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

IoT Basic Study on Development of Duct Burner Integrated with SCR Catalyst (SCR 촉매 일체형 덕트 버너 개발에 대한 IoT 기초연구)

  • Jang, Sung-Cheol;Shim, Yo-Seop
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2021
  • Since the optimization of the diesel engine for the ship cannot satisfy the NOx emission limit by the method of reducing the NOx emission, it is necessary to reduce the NOx by post-processing the exhaust gas. In this study, we will review the feasibility of designing a binary nozzle and mixing chamber duct for effectively converting the number of elements into NH3 in the oil burner for the SCR catalyst unit integrated duct in the ship under development through the computational heat flow analysis for the velocity distribution and temperature distribution.

The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine (대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구)

  • Yoon, Wook-Hyeon;Kim, Byung-Seok;Kim, Dong-Hun;Kim, Ki-Doo;Ha, Ji-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

Numerical Study of Breakup Process of Diesel Spray (디젤분무의 분열과정에 대한 수치해석 연구)

  • Yeom, Jeong Kuk;Jung, Woo Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1489-1495
    • /
    • 2013
  • High-pressure flows are ubiquitous in many industrial fields. A representative application is fuel injection using a common-rail control system in diesel engines, where the injection pressure in the injector exceeds 1000 bar. In high-speed injection, the fluid injected through the nozzle undergoes breakup owing to the interaction with the ambient gas. The breakup process influences mixture formation, which in turn influences combustion in diesel engines. Therefore, it is very important to analyze the breakup process of fuel spray. The Reitz and Diwakar model and cascade atomization and breakup (CAB) model were used in this study as sub-models for the numerical analysis of the breakup process of fuel spray. This study aims to precisely analyze the breakup process of spray and to investigate the breakup frequency of the injected fuel. Consequently, it proposes a suitable sub-model for analyzing the breakup process of a diesel spray by using CFX, a commercial CFD program.

A Theoretical Study on Flow and Pressure Variation Characteristics of Fuel Supply System in Diesel Engine (디젤엔진 연료계통의 유동 및 압력 변동특성에 관한 이론적 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.12-23
    • /
    • 1993
  • Combustion phenomenon in diesel engine is mainly governed by characteristics of fuel injection and fuel spray system affected by its dimensions and operating condition. Fuel supply system is consisted of fuel injection pump, high pressure pipe and injection nozzle. In order to develope the more economical diesel fuel injection system, it is in need to carryout the fairly wide range experiments, which is quite impossible. Therefore, theoretical analysis for the numberous parameters is powerful method in this case. In the present study, equations of continuity of fuel oil in fuel injection system are solved to obtain the flow and pressure variation in diesel fuel system affected by injection pump speed, plunger diameter, pipe length and nozzle opening pressure.

  • PDF