• 제목/요약/키워드: 디젤연료

검색결과 836건 처리시간 0.029초

DME 연료에 첨가제를 혼합하였을 때의 연소 특성 및 배출가스 특성에 관한 연구 (Effects of DME Additives on Combustion Characteristics and Nano-particle Distributions in a Single Cylinder Compression Ignition Engine)

  • 권석주;차준표;강민구;이창식;박성욱;임영관
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.19-25
    • /
    • 2012
  • This study describes effects of DME additives on combustion and exhaust emissions characteristics including nano-particle in a single cylinder compression ignition engine. Considered additives include bio-diesel, n-butanol, and MTBE for increasing kinematic viscosity. Among three additives, n-butanol showed the greatest kinematic viscosity. In addition MTBE showed the highest vapor pressure. In the present study mixing ratios of additives were kept constant at 1 and 10% by volume. Experiments were performed at 1200rpm engine speed and nano-particles were measured by SMPS (Scanning mobility particle sizer) devices. Results of combustion characteristics showed that considered additives had little effects on combustion pressure. However, patterns of heat release rate were dependent on properties of additives. Nano-particles of MTBE were the lowest among considered additives.

직접분사식 압축착화엔진에서 Pilot분사에 따른 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구 (A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels Using Pilot Injection in DICI Engine)

  • 정재훈;임옥택
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.55-64
    • /
    • 2014
  • This work was investigated on pilot injection strategy of blended fuels(Diesel-DME) for combustion and emissions in a single cylinder direct injection compression ignition engine. Diesel and DME were blended by the method of weight ratio. Weight ratios for diesel and DME were 95:05 and 90:10 respectively. dSOI between main and pilot injection timing was varied. A total amount of injected fuels(single injection) was adjusted to obtain the fixed BMEP as 4.2 bar in order to compare with the fuel conditions. Also, the amount of pilot injection fuel was varied by 5%, 10% and 20% of total injection fuel. The engine was equipped with common rail and injection pressure is 700 bar at 1200 rpm. As a result, when mixing ratio increase, indicated thermal efficiency was increased in comparison with DD 100 and CO, THC and smoke were lower than DD 100. The influence of reducing NOx by pilot injection was more effective than DD 100. When pilot injection quantity increase, abrupt increase of NOx was occured at pilot injection quantity of 20%.

연소계 및 연료분사계의 구성인자가 디젤엔진의 성능 및 배기 배출물에 미치는 영향 (Effects of Parameters of Combustion and Fuel Injection System on Performance and Exhaust Emissions in a Diesel Engine)

  • 이준
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.166-173
    • /
    • 2006
  • This study investigates a heavy duty diesel engine with swept vol. 12.6L, 4cycle-OHC type to verify the effects of the performance and exhaust gas emission according to the variable specifications of both swirl ratio and flow coefficient in inlet port, combustion bowl and fuel injection system. To meet the high BMEP and stringent exhaust emission standard, a turbocharger with wastegate and an intercooler were installed in the engine. Helical port, major design parameters for combustion chamber and electronic fuel injection pump with 1,000bar were reviewed and applied. Confirmation tests were also performed to meet the target value, $NO_x$ 5.0g/kWh and PM 0.1g/kWh of Euro3 exhaust emission legislation. The results of this study show that not only is it effective to use a relatively bigger bowl size for controlling rapid burning condition due to the decreased in-bowl swirl, but also to use a concave cam with double injection rates to decrease $NO_x$.

해조류 부산물의 화학적 처리에 따른 표면특성 분석 (Influence of chemical treatments on surface properties of marine algae)

  • 심이나;한성옥
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.176.2-176.2
    • /
    • 2011
  • 전 세계는 화석연료의 과사용으로 에너지 고갈과 환경오염의 문제에 직면하고 있으며, 자연과 공존하며 지속성장할 수 있는 신재생에너지의 이용확대에 대한 개발이 부각되고 있다. 이에 따라 지속적인 발전과 함께 에너지보존 및 효율적인 환경보존을 위한 대체 가능한 새로운 에너지의 개발에 관심이 모아지고 있다. 최근 부각되고 있는 바이오에너지(바이오에탄올, 바이오디젤, 바이오가스 등)를 생산하는 여러 가지 새로운 바이오매스 중 해조류는 이산화탄소 흡수 능력이 매우 뛰어나고, 에너지 저장성이 우수하다는 장점이 있다. 본 연구에서는 새로운 바이오매스원인 해조류의 부산물의 표면 특성 및 바이오복합재료의 보강재로써의 이용가능성에 대해 분석하였다. 바이오복합재료에서 소수성인 고분자와의 상호보완적 계면 결합은 보강재의 중요한 특성 중 하나이다. 해조류 부산물의 표면을 화학적 처리함으로써 폴리머 매트릭스와 해조류 부산물 사이의 계면결합이 향상됨을 기대할 수 있으며 이에 따라 해조류 부산물을 보강재로 사용한 바이오복합재료의 기계적 강도 또한 향상됨을 기대할 수 있다. 본 연구에서는 원자힘현미경(Atomic force microscope; AFM)을 사용하여 해조류 부산물의 화학적 처리에 따른 표면특성을 관찰하였으며, 친환경적인 바이오매스인 해조류 부산물을 바이오복합재료의 보강재로써의 이용가능성에 대해 연구함으로써, 지구온난화의 주원인인 온실가스 발생을 줄이고, 자원고갈이라는 에너지 위기를 극복할 수 있는 친환경적인 대안을 제시 할 수 있다.

  • PDF

Updraft 고정층 가스화 시스템에서의 왕겨 가스화 합성가스 정제특성 (Characteristics of Syngas Refinery via Rice Husk Gasification in the Updraft Fixed-bed Gasification System)

  • 윤영식;성호진;박수남;구재회
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.171.2-171.2
    • /
    • 2011
  • 지속가능한 발전과 저탄소 녹색성장의 개념이 대두되면서 우리나라를 비롯한 주요 선진국은 자국의 화석연료 의존도를 낮추고 대체에너지로 환경친화적이며, 청정에너지로 각광받는 신 재생에너지의 활용에 경제적, 정책적 지원을 아끼지 않고 있는 실정이다. 실제로 유럽에서는 바이오매스의 일종인 우드칩을 활용한 가정용 보일러가 보급되고 있으며, 동남아시아에서는 열대식물을 이용한 저온열분해를 활용하여 바이오디젤을 생산하고 있다. 우리나라의 경우 대부분의 바이오매스는 발생되는 임야에서 재이용되거나 경제성이 있을 경우에 운송되어 재활용되고 있으며, 임부목과 같은 일부 바이오매스는 수익성이 없어 발생현지에 방치되는 경우도 있다. 본 연구에서 주목한 왕겨의 경우 미곡종합처리장에서 대량으로 발생되지만 그 활용도에 있어서 축적된 바이오에너지에 비해 에너지회수율이 저조하다고 할 수 있다. 왕겨는 임야에서 발생되는 폐목재나 다른 바이오매스에 비해 함유되어 있는 수분이 적고(12%), 휘발분의 함량이 많으며(58%), 고정탄소(17%), 회분(13%)로 열분해/가스화에 적용가능하다. 본 실험에서 생산된 합성가스의 활용방법으로는 보일러를 이용한 스팀 및 전력생산, 가스엔진을 이용한 전력생산, 폐열회수 등이 있으며 생산된 합성가스를 활용하기 위해서는 오염물질의 정제특성에 대한 연구가 선행되어야 한다. 따라서 본 연구에서는 합성가스 내에 존재하는 분진, 타르, HCl, HCN, $NH_3$의 제거효율을 조사하였다.

  • PDF

2.2L 직분사 디젤 엔진에서 LNT 촉매 재생을 위한 환원제 분사 방법 비교 (Comparison of the LNT Regeneration Methods in 2.2L Common Rail Direct Injection Diesel Engine)

  • 남충우;한만배
    • 한국자동차공학회논문집
    • /
    • 제23권2호
    • /
    • pp.169-177
    • /
    • 2015
  • In this study we investigated the regeneration methods for the lean $NO_x$ trap (LNT) catalyst in a 2.2L direct injection diesel engine. The regeneration methods were 1) in-cylinder post fuel injection and 2) external fuel injection strategy. The in-cylinder post fuel injection method uses in-cylinder injectors with the addition of the post fuel injection to supply enough reductants such as CO, $H_2$, THC. The external fuel injection method was enabled by installing a fuel injector with a wide spray angle before the LNT catalyst. Through the engine experiment, the $NO_x$ conversion efficiency, the amount of reductant exhaust gases, fuel consumption, and temperature behavior in the LNT catalyst were evaluated and compared for the two regeneration methods.

디젤기관의 대체연료 이용에 관한 연구 (I) (기본성능) (A Study on Alternative Fuel as Fuel Substitutes in a DI Diesel Engine(I) (Basic Performance))

  • 오영택;정규조;촌산정
    • 오토저널
    • /
    • 제10권5호
    • /
    • pp.61-68
    • /
    • 1988
  • This paper reports the basic performance of a naturally aspirated DI diesel engine which is used widely in industry and agriculture when vegetable oils are used as fuel substitutes. In this paper, the properties of vegetable oils as diesel fuel were investigated and the load-performance of diesel engine when vegetable oils were used, as tested compared against diesel fuel. The general objective of this investigation is to realize an efficient, clean, and low carbon deposit combustion of the vegetable oils in diesel engines, showing their feasibility as diesel fuel substitutes. The results of this experiment were as follows; (1) Compared with diesel fuel, the droplet size of vegetable oil is very large. (2) Compared with diesel fuel, rapeseed oil, palm oil, and their blend fuels offered lower smoke, lower NOx, ower engine noise, and high thermal efficiency in a D.I. diesel engine However, there were carbon deposit and piston ring sticking problems with long-term operation. (3) For ethanol-rapeseed oil blends, a 10-20% of ethanol content is recommended to enable lower BSHC and less smoke without a remarkable increase in engine noise compared with pure rapeseed oil. (4) A 10% oxygen content in the vegetable oils is contributed to reduced smoke emission.

  • PDF

디젤기관의 대체연료 이용에 관한 연구(II) (시동성 및 내구성 문제) (A Study on Alternative Fuel as Fuel Substitutes in a DI Diesel Engine(II) (Startability and Durability))

  • 오영택;정규조;촌산정
    • 오토저널
    • /
    • 제10권6호
    • /
    • pp.48-53
    • /
    • 1988
  • In a previous report, the properties of vegetable oils as diesel fuel substitutes were investigated and the basic load performance of a diesel engine was examined using vegetable oil. The results show that despite of the long term chain hydrocarbon structure and large droplet size due to high viscosity, vegetable oils have good basic performance and exhaust emissions, however they cause serious problems as carbon deposit buildup, they have poor durability, and also poor thermal efficiency. In this paper, the startability and engine durability with long term operation was tested by physical methods for reducing viscosity when vegetable oil was used as compared against diesel fuel. The results obtained in this investigation may be stated as follows; (1) There is no problem in startability when vegetable oil was used as diesel fuel substitutes as far as fuel temperature is higher than 30.deg. C (2) The carbon deposits were most extensive at lower loads and lower engine speeds, and deposit buildup more heavily on the cooler parts of the combustion chamber wall. (3) Blends with 25% diesel fuel and 20v-% ethanol are effective in reducing the carbon deposit buildups. (4) Significant improvement in carbon deposit and piston ring stick can be obtained by heating fuel(200.deg.).

  • PDF

승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine)

  • 노현구;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

선형 회귀 분석과 회색 관계 분석을 이용한 디젤엔진의 다단연료분사 제어전략 최적화 연구 (A Study on the Optimization of Multiple Injection Strategy for a Diesel Engine using Grey Relational Analysis and Linear Regression Analysis)

  • 김수겸;우승철;김웅일;박상기;이기형
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.247-253
    • /
    • 2015
  • Recently, the engine calibration technique has been much more complicated than that of the past engine case in order to satisfy the strict emission regulations. The current calibration method for the diesel engine which has an increasing market is both costly and time-consuming. New engine calibration method is required to develop for high-quality diesel engines with low cost and release it at the appropriate time. This study provides the optimal calibrating technique for complex engine systems using statistical modeling and numerical optimization. Firstly, it design a test plan based on Design of Experiments, a V-optimality methodology which is suitable looking for set-points, and determine the shape of test engine response. Secondly, it uses functions to make linear regression model for data analysis and optimization to fit the models of engines behavior. Finally, it generates the optimal calibrations obtained directly from empirical engine models using Grey Relational Analysis and compares the calibrations with data. This method can develop a process for systematically identifying the optimal balance of engine emissions.