• Title/Summary/Keyword: 디젤엔진 모델

Search Result 93, Processing Time 0.018 seconds

Dual Fuel Generator Modeling and Simulation for Development of PMS HILS (PMS HILS 구축을 위한 Dual Fuel Generator 모델링 및 시뮬레이션)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Lee, Kwang-Kook;Song, Jee-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.613-619
    • /
    • 2017
  • In this paper, DF(Dual Fuel) Generator modeling, which uses both conventional diesel fuel and LNG fuel, has been performed and monitoring system has been developed based on MATLAB/SIMULINK for the development of PMS(Power Management System) HILS(Hardware In the Loop Simulation). The principal components modeling of DF Generator are DF engine which provides the mechanical power and synchronous generator which convert the mechanical power into electrical power. Submodels, such as throttle body, intake manifold, torque generation and mass of LNG and diesel Quantity are used to perform DF engine. Also, governor is used for load sharing between paralleled DF generators to share a total load that exceeds the capacity of a single generator. To verify modeling of DF Generator designated ship lumped load Simulation is carried out. A validity of DF Generator has been verified by comparison between simulation results and estimated result from the designated lumped load.

Computational Analysis on the Control of Droplet Entrained in the Exhaust from the Spray Type Scrubber system (스프레이형 스크러버의 배출가스에 포함된 액적의 제어방법에 관한 전산해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang;Koo, Seongmo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.191-199
    • /
    • 2015
  • The SOx emission from the ship diesel engines will do a negative influence to the human health and the environment. To reduce the negative environmental effect of the SOx emission caused by the high traffic of ship movements, the SECA (SOx emission control area) has been set on several province around world to carry out the severe emissions control and to meet the emissions control standard. To cut down the SOx emission from the ships, the wet type scrubber is being used widely. In this work, we prepared a numerical model to simulate the spray type scrubber to study the motion of liquid droplets in the flow of the scrubber. For the analysis, the CFD (computational fluid dynamics) method was adopted. As a special topic of the study, we designed the wave plate type of mist eliminator to check the carry over of the uncontrolled water droplet to the exhaust. Numerical analysis is divided into two stages. At the first stage, the analysis was done on the basic scrubber without the mist eliminator, and then the second stage of analysis was done on the scrubber with the mist eliminator on several condition to check and compare with the basic scrubber. On the condition of the basic scrubber, 42.0% of the distributed water droplets were carried over to the exhaust. But by adding the designed droplet eliminator at the exhaust of the scrubber, only 3.4% of the distributed water droplets supplied to the scrubber was emitted to the atmosphere.

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.