• Title/Summary/Keyword: 디젤엔진제어시스템

Search Result 63, Processing Time 0.027 seconds

Design of a Control System for the Emergency Diesel Generator (비상용 디젤발전기 제어시스템 설계)

  • Kim, Jin-ae;Joo, Jae-hun;Baek, Pan-Geun;Kim, Byeong-Jun;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.849-853
    • /
    • 2009
  • A generator is in use for a moving vehicle like car, aircraft, ship as well as key industry including a thermal power plant, a water power plant, a nuclear power plant, and so on. Such the AC generator plays an important role in vehicle, ship, aircraft, and so forth, at the point of generating electric power. Especially in the matter of the ship, the emergency generator system is mounted to provide against malfunction of main generator on a voyage. So, it is ordered that the system can monitor the main generator and operate the emergency generator when the emergency happens. This study is about controller for the emergency diesel engine generator and design of a various software.

  • PDF

Common Rail Pressure Control Algorithm for Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT를 이용한 디젤엔진의 커먼레일 압력 제어알고리즘 설계 연구)

  • Shin, Jaewook;Hong, Seungwoo;Park, Inseok;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • This paper proposes a common rail pressure control algorithm for passenger car diesel engines. For handling the parameter-varying characteristics of common rail systems, the quantitative feedback theory (QFT) is applied to the design of a robust rail pressure control algorithm. The driving current of the pressure control valve and the common rail pressure are used as the input/output variables for the common rail system model. The model parameter uncertainty ranges are identified through experiments. Rail pressure controller requirements in terms of tracking performance, robust stability, and disturbance rejection are defined on a Nichols chart, and these requirements are fulfilled by designing a compensator and a prefilter in the QFT framework. The proposed common rail pressure control algorithm is validated through engine experiments. The experimental results show that the proposed rail pressure controller has a good degree of consistency under various operating conditions, and it successfully satisfies the requirements for reference tracking and disturbance rejection.

A Development Study on an Engine Control Module of an Electronic Marine Diesel Engine (전자식 선박디젤엔진의 엔진제어기 개발/연구)

  • Sim, Han-Sub;Lee, Min-Kwang;Lee, Kang-Yoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.134-140
    • /
    • 2015
  • A control program of an engine control module (ECM) was developed, and its control performance was verified on a 750Ps marine diesel engine. The control method was designed for an engine rotational speed control system. For ECM hardware, the commercial rapid control prototype (RCP) ECM was used. The programming tool for control algorithm development was the MatLab/Simulink. The main control algorithm assembled many control models as engine cranking, run, and stall. Each model has sub-models to input/output control signals. The target engine speed was input signal from a speed control lever, and control output signal of the ECM was sent to the unit-injectors for fuel injection. The engine test was performed under various conditions of engine rotational speeds and dynamometer loads. The test results show that the control function of the ECM is suitable for electrical marine diesel engines.

Study on the Digital Control System for the Parallel Operation of Diesel Engine Synchronous Generators (병렬 운전형 디젤 엔진 동기 발전기의 디지털 제어 시스템에 관한 연구)

  • Cho Chang Hee;Park Min Kook;Ahn Jong Bo;Kwon Soon Man;Kim Sung Shin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1103-1105
    • /
    • 2004
  • 현대 도시인들에게 전력의 신뢰성있는 공급은 당연시되고 있다. 그러나, 2002년 캘리포니아에서 있었던 대규모의 정전 사고는 불안정한 전력의 공급이 현대 문명 생활에 있어서 얼마나 큰 영향을 끼치며, 개별적인 보완 전력 공급의 중요성에 대해서 일깨워주는 계기가 되었다. 지금까지 이러한 전력 공급의 중단에 대한 주요 대비책으로서 비상용 엔진 발전기 시스템은 보조 전원의 중요한 역할을 해왔다. 여기에서 더 높은 효율과, 첨두 부하 절감의 기능, 그리고 전력 계통과의 Co-generation 기능을 가지는 고기능의 제어 시스템에 대한 수요가 증대되어지고 있는 상태이다. 본 논문에서는 다수 비상용 발전기들의 병렬 운전 및 전력 계통과의 연계 운전을 지원하는 고기능의 디지털 전력제어 시스템과 운전 지원을 위한 감시 제어 시스템에 대해 소개한다.

  • PDF

Experimental Verification of Adsorption Rate Feedback Control Strategy for Automotive Urea-SCR DeNOX System (실차 실험을 통한 승용 디젤엔진의 Urea-SCR을 위한 암모니아 흡장률 피드백 제어 분사전략 검증)

  • Shin, Byeonguk;Park, Jooyoung;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.397-407
    • /
    • 2017
  • In this study, a SCR system is employed to selectively reduce $NO_X$, which is a major cause of environmental pollution and issues in diesel engines. In particular, this paper focuses on the combination of feedforward injection strategies, depending on the NO/$NO_X$ ratio, and feedback injection control, using $NH_3$ coverage ratio, based on a SCR model. A 2.2 L passenger diesel engine, which is equipped with a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF), was used in the experiments. The developed control algorithm is implemented on a real-time computer with injection control algorithm. By analyzing the $NO_X$ emission measurement, the performance of the proposed injection control algorithm is verified.

A study on the reduction of emission by controlled cooling system in a diesel engine (냉각 시스템 제어에 따른 디젤 엔진의 배기가스 저감에 관한 연구)

  • Choi, Kyung-Wook;Cho, Won-Joon;Lee, Ki-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3294-3299
    • /
    • 2007
  • These days the exhaustion of petroleum resources and environmental problems are getting serious. Many researchers are focused on low emission and high performance vehicles. Therefore, we should concern about emission regulation when we design a new car. In this study, we investigated the characteristics of the traditional mechanical engine cooling systems which control the engine temperature using engine speed and wax type thermostat. This experiment used three components which are Radiator fan, water pump and water valve controlled by an electronic system based on the engine status (load, speed). We elucidated how different between traditional mechanical cooling system and electronic cooling system which control coolant temperature and coolant flow rate in a DI diesel engine in this paper. The results revealed a fuel saving and an emission (CO, HC) reduction on NEDC cycle.

  • PDF

Application of robust fault detection method for uncertain systms to diesel engine system (불확실성을 고려한 디젤엔진의 견실한 이상검출)

  • 유경상;김대우;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1419-1422
    • /
    • 1997
  • This paper deals with the Appliation of robust fault detection problem in uncertain linear systems, having both model mismatch and noise. A robust fault detection method presented by Kwon et al.(1994) for SISO uncertain systems. Here we experimented this method to the diesel engine systems described by difference ARMA models. The model mismatch includes here linearization error as well as undermodeling. Comparisons are made with alternative fault detection method which do not account noise. The new method is shown to have good performance.

  • PDF

최근 선박의 진동과 초기 제어 대책

  • Gyun-Yang,Jeong;Jin-Hwa,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.107-119
    • /
    • 1990
  • 에너지 절약을 목적으로 한 최근 신조선의 경우, 구조는 경량화되어 가는 반면 기진력은 증가되고 있다. 즉 주기관은 소수 대구경 기통을 가진 고효율 디젤 엔진이 채용되고 있어 진동 유발요인은 증가되고 있다. 따라서 설계초기부터 진동제어 목표를 세우고 설계 단계마다 진동을 예측 진단하고, 이의 대책을 세우는 방진 시스템이 요구된다. 본문에서는 이러한 시스템 개발의 일환으로 최근 현대중공업에서 건조한 선박 진동 수준 및 진동 요인 변천을 검토하고 추후 개정

  • PDF

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Design of an Intelligent Speed Control System for Marine Diesel Engines (선박용 디젤엔진을 위한 지능적인 속도제어시스템의 설계)

  • J.S.Ha;S.J.Oh
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.414-420
    • /
    • 1997
  • An intelligent speed control system for marine diesel engines is presented. The approach adopt¬ed is to use a conventional PID controller for normal operation and a feedforward controller for adaptive control. The feedforward controller is a neural network. The neural network is the inverse dynamics model of the plant, which is being trained on line. The parametric model of the diesel engine is represented in a linear second-order system, with a first-order combustion part and a revolution part each at a normal operating point. The time delay in the control of the com¬bustion part is approximated to the first-order system. The tuned PID parameters are set based on the model for normal operating point. To obtain the inverse dynamics of the diesel engine system, two neural networks are used, one for inverse, the other for forward dynamics. The former is posi¬tioned across the plant to learn its inverse dynamics during operation, and the latter is placed in series with the controlled plant. Simulation results are presented to illustrate the applicability of the proposed scheme to intelligent adaptive control of diesel engines.

  • PDF