• 제목/요약/키워드: 디젤분사

검색결과 512건 처리시간 0.021초

DME를 연료로 하는 커먼레일 디젤 엔진의 연소와 배기 특성에 미치는 분사압력과 EGR의 영향 (Effects of the EGR and Injection Pressure on the Combustion and Emission Characteristics of DME Commonrail Diesel Engine)

  • 정재우;강정호;이성만;김현철;강우
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.84-91
    • /
    • 2006
  • In this study, the effect of EGR and fuel injection pressure on the characteristics of combustion and emission performance of the common-rail diesel engine is investigated using DME fuel as a smoke-free alternative fuel. Because the heating value and density of DME fuel are lower than those of diesel fuel, the injection duration of the DME engine is relatively longer than the injection duration of the diesel engine with the same injection pressure. However, the higher injection pressure can shorten the injection duration for the DME engine. Although the smoke level of the DME engine is much lower than that of the diesel engine, the NOx is at a level similar to that of the diesel engine. As a proposed solution for this, the EGR technique is empirically applied to the DME engine. In the experiments, the injection pressure was changed from 200bar to 400bar, and the EGR rate was limited under 40%. With the same injection timing and fuel amount, the experiment results indicated that the increase of injection pressure led to the increase of IMEP while decreasing HC and CO emissions. However, the NOx emission tends to increase as the injection pressure becomes higher. On the other hand, as the EGR rate was increased, NOx emission and A/F were reduced while the HC and CO emissions were increased. Because HC and CO emissions have the critical A/F point where the emissions of HC and CO are rapidly increased, it is proposed that the EGR rate must be limited under the critical EGR rate.

Cooled EGR 시스템의 EGR률과 연료분사시기가 소형 디젤엔진의 배기 배출물 특성에 미치는 영향에 관한 연구 (Effect of EGR Rate and Injection Timing on the Characteristics of Exhaust Emissions in Light-duty Diesel Engine)

  • 공호정;황인구;고아현;명차리;박심수;임창식
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.7-12
    • /
    • 2012
  • Cooled EGR system is widely used to reduce NOx emissions in diesel engine. But when EGR rate was increased, combustion stability was worsened and PM level was increased. So determining optimized control point of EGR rate is important. In order to determine this point, it is important to figure out the effect of EGR system on the exhaust emissions. In this research, NOx and PM emissions were analyzed with various coolant temperature supplied to the EGR cooler at several positions such as downstream of turbocharger, upstream and downstream of DPF. Effects of some variables such as EGR rate, hot / cooled EGR and change of injection timing were estimated. And $CO_2$ emissions were measured at exhaust and intake manifold to calculate EGR rate at each engine operating condition. Also combustion analysis was performed in each engine operating conditions. In the result of this study, there was trade-off between NOx emissions and PM emissions. When EGR rate was increased, combustion pressure was decreased and COV of IMEP was increased.

연료분사펌프의 윤활 특성 개선: 제2부 - 그루브의 적용 (Improvement of the Lubrication Characteristics of Fuel Injection Pump for Medium-Speed Diesel Engines: Part II - Application of Grooves)

  • 홍성호;이보라;조용주
    • Tribology and Lubricants
    • /
    • 제31권5호
    • /
    • pp.213-220
    • /
    • 2015
  • This study evaluates the effect of grooves on the stem part of a plunger on the lubrication characteristics of a fuel injection pump (FIP) by using hydrodynamic lubrication analysis. The current study uses the two-dimensional Reynolds equation to evaluate the changes in lubrication characteristics with variations in clearance, viscosity, and grooves for a laminar, incompressible, and unsteady state flow. This study investigates the lubrication characteristics by comparing the dimensionless minimum film thickness or the film parameter, which is the ratio of the minimum film thickness to surface roughness. The analysis method for the groove section differs depending on the depth of the groove. For instance, in the case of a shallow groove, the film thickness equation considers the depth of the groove, while in the case of a deep grove, it considers the flow continuity. The lubrication characteristics of the FIP are more sensitive to changes in the groove width than to changes in other design variables. Moreover, the application of a groove is more effective under low viscosity conditions. The smaller the distance from the edge of the stem part to the first groove in the case of shallow grooves, the better are the lubrication characteristics of the FIP. In contrast, in the case of deep grooves, the lubrication characteristics of the FIP improve as the distance increases. The application of shallow grooves is more effective for improving the lubrication characteristics than the application of deep grooves.

커먼레일 단기통 엔진에서 GTL 연료의 분사시기 변화에 따른 배출물 특성 (An Experimental Study on the Emission Characteristics of GTL Fuel with Injection Timings in CRDi Single Cylinder Engine)

  • 김병준;이용규;최교남;정동수;차경옥
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.181-187
    • /
    • 2008
  • Recently, alternative fuels are drawing more attentions due to the increasing need for lower emission characteristics and fuel consumption rate in automotive engines. The GTL(gas to luquid) is the one of most favored candidates. It has higher cetane number(more than 75) and almost negligible sulphur and aromatic contents. Therefore, enhanced emission characteristics are expected even in the application in diesel engines without any modification. In this study, the cylinder pressure and heat release, emission characteristics with fuel injection timings are compared between diesel and GTL fuel in the single cylinder diesel engine. Noticeable reduction in PM, THC and CO emission are observed due to lower sulphur and aromatic contents in GTL. Also, the ignition delay decreased due to higher cetane number of GTL, which slightly decreased the amount of NOx emissions. With the retards of main injection timing, NOx decreases more for the case of GTL, while the level of THC and CO emissions still remains lower than the case of diesel. Therefore, there is much room for the control of injection timing for NOx reduction without sacrificing THC and CO emissions. With the retards of main injection timing, Small size distribution of PM became lager and there amount increased. But from all conditions, size distribution of PM for the case GTL was lower than Diesel.

대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구 (The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine)

  • 윤욱현;김병석;김동훈;김기두;하지수
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

분공수와 분사각의 영향에 따른 거시적 디젤 분무 가시화 (Macroscopic Visualization of Diesel Sprays with respect to Nozzle Hole Numbers and Injection Angles)

  • 정용진;장진영;배충식
    • 한국분무공학회지
    • /
    • 제29권1호
    • /
    • pp.32-37
    • /
    • 2024
  • Macroscopic visualization of non-evaporating sprays was experimentally conducted to investigate spray tip penetration and spray angle under low-density conditions, corresponding to an early injection strategy. Furthermore, injectors with varying injection angles (146° and 70°) and numbers of holes (8 and 14) were employed to examine the impact of injector configuration. Compared to the baseline injector, 8H146, which has 8 holes and a 146° injection angle, the spray tip penetration of the 8H70 injector was found to be longer. This can be attributed to higher momentum due to a smooth flow field between the sac volume and the nozzle inlet, which is located closer to the injector tip centerline. The increase in velocity led to intense turbulence generation, resulting in a wider spray angle. Conversely, the spray tip penetration of the 14H70 injector was shorter than that of the 8H70 injector. The competition between increased velocity and decreased nozzle diameter influenced the spray tip penetration for the 14H70 injector; the increase in momentum, previously observed for the 8H70 injector, contributed to an increase in spray tip penetration, but a decrease in nozzle diameter could lead to a reduction in spray tip penetration. The spray angle for the 14H70 injector was similar to that of the 8H146 injector. Moreover, injection rate measurements revealed that the slope for a narrow injection angle (70°) was steeper than that for a wider injection angle during the injection event.

승용 디젤차량에서 Urea-SCR 시스템의 NOX 저감 특성에 관한 실험적 연구 (Experimental Study on Characteristics of NOX Reduction with Urea-Selective Catalytic Reduction System in Diesel Passenger Vehicle)

  • 박승원;이성욱;조용석;강연식
    • 대한기계학회논문집B
    • /
    • 제41권4호
    • /
    • pp.269-275
    • /
    • 2017
  • LNT(Lean $NO_X$ Trap), LNC(Lean $NO_X$ Catalyst), SCR(Selective Catalytic Reduction)과 같은 $NO_X$ 저감기술은 상용차뿐만이 아닌 승용차량 성능향상을 위해 지속적으로 개발이 진행되고 있다. 특히 Urea-SCR 시스템은 연료손실 없이 이론상 100%에 가깝게 $NO_X$를 저감하는 가장 효과적인 기술로 환원반응으로 배기가스를 $N_2$$H_2O$로 배출하기 위해 환원제인 요소수를 분사해야한다. 하지만 엔진에서와는 달리 실제차량에서의 적용은 SCR 효율이 떨어지게 된다. 따라서 실제차량에서의 SCR 효율을 극대화하는 기술 개발이 요구되고 있는 실정이다. 본 연구에서는, Post EURO-6 배기가스 규제에 대응하기 위한 디젤승용차량에서의 Urea-SCR의 $NO_X$ 저감 성능에 의한 저감효율의 극대화를 목적으로 실차용 Urea-SCR 시스템 위한 기초자료로 제시하고자 한다.

전자제어 디젤엔진의 흡기 다기관 및 연료분사장치 정비에 따른 매연 배출특성에 관한 연구 (Study on the Characteristics of Exhaust Emissions in accordance with the Intake Manifold and Fuel Injector Maintenance of the Electronic Control Diesel Engine)

  • 강현준;김태중
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.196-205
    • /
    • 2016
  • 자동차로부터 배출되는 배기가스는 오존 및 미세먼지 등의 농도를 증가시켜 인체의 건강을 위협할 뿐만 아니라 지구 온난화 물질인 이산화탄소를 다량 배출하고 있어 지구 온난화에도 지대한 영향을 미치고 있다. 그래서 정부는 자동차에서 배출되는 배기가스를 효율적으로 규제하기 위한 제도로 운행차 배출가스 정밀검사 제도를 시행하고 있다. 자동차 배출가스를 줄이려는 연구는 다방면으로 이루어지고 있으며, 자동차의 배출가스 중 HC, NOx, $CO_2$ 등의 발생을 줄이기 위한 연구가 이루어지고 있다. 그러나 노후된 자동차에 대한 배출가스 저감에 대한 연구는 부족한 실정이다. 노후된 디젤자동차들이 운행차 배출가스 정밀검사를 만족하기 위해서는 흡기 다기관(manifold)과 인젝터의 카본퇴적물(Carbon sediment)을 세척하여 출력향상 및 배출가스 저감에 대한 연구가 필요하다. 따라서 본 연구에서는 차령 5년 이상, 주행거리 80,000 km 이상의 디젤자동차에 흡기 다기관 클리닝과 인젝터 클리닝을 동시에 수행하여 매연 발생에 미치는 영향을 비교 분석하였다. 실험결과, 흡기다기관 클리닝과 인젝터 클리닝을 동시 수행한 결과는 각각 수행한 결과보다 매연을 75.2% 감소시켰다. 또한, 흡기다기관 클리닝과 인젝터 클리닝을 동시 수행한 결과는 검사 후 8.5초부터 배출허용 기준 30%이하를 만족하였다.

실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정 (Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines)

  • 김도화;오병걸;오승석;이강윤;선우명호
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.

디젤 예혼합 압축착화 엔진에서 EGR 및 수소농후가스의 영향 (The Effects of EGR and Hydrogen Enriched Gas on Diesel HCCI Engine)

  • 박철웅;조준호;오승묵
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2011
  • In recent years, there has been an interest in early-injection diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to standard diesel engine. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency in homogeneous charge compression ignition engines. While earlier studies have shown that a reduction in NOx emissions from HCCI engine is possible, there are some significant problems including the control of ignition timing and combustion rate. In order to investigate the effect of EGR and hydrogen enriched gas on combustion characteristics and emissions, an experiments with single cylinder CRDi engine were carried out concerning the formation of various premixed charge, which can achieved by early injection, EGR and hydrogen enriched gas. EGR was not effective to further reduce NOx and PM emissions. It was found that NOx emissions were decreased with an introduction of hydrogen enriched gas and an adequate diesel fuel amount.