• Title/Summary/Keyword: 디젤분사

Search Result 512, Processing Time 0.023 seconds

A Study on Vehicle Application and Performance of LNG-Diesel Dual Fuel Engine (LNG-디젤 혼소엔진의 성능 및 실차 적용성 연구)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Cho, Gyu-Baek;Hong, Sun-Cheol;Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2011
  • The electronically controlled diesel engine was converted to dual fuel engine system. Test engine was set up for investigating the power output, thermal efficiency and emissions. ND 13-mode tests were employed for the engine test cycle. The emission result of dual fuel mode meets Euro-4 (K2006) regulation and the engine performance of dual fuel engine was comparable to the performance of diesel engine. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, maximum driving distance per refueling and driveability were examined on the road including free ways. Developed vehicle can be operated over 500 km with dual fuel mode and shows 80% of diesel substitution ratio. Driveability of dual fuel mode is similar with that of diesel mode.

Numerical Analysis of Sprays in the Combustion Chamber of Diesel Engine (디젤 분무 거동에 관한 수치 해석적 연구)

  • Cha K. S.;Choi J. W.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2000
  • In this study, the spray models incorporated into the GTT code were tested for sprays injected in quiescent swirling gases and for the sprays impinging on a flat wall, and the validity of the models has been confirmed by comparing the calculated results with the experimental data. Using this code, the gas flow, spray behavior and fuel vapor distributions in the combustion chamber of a D.I engine have been numerically analyzed with respect to the constant injection pressure and the injection pressure varying with injection time.

  • PDF

Experimental Study for the Prevention of Cavitation Damage in the Diesel Fuel Injection Pumps (디젤엔진 연료분사펌프 캐비테이션 손상 방지를 위한 실험적 연구)

  • Kim, Dong-Hun;Park, Tae-Hyung;Heo, Jeong-Yun;Ryu, Seung-Hyup;Kang, Sang-Lip
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.61-61
    • /
    • 2011
  • Cavitation phenomena during the injection process of the conventional fuel injection pump for a medium-speed diesel engine can cause surface damage with material removal or round-off on the plunger and barrel port and may shorten their expected life time. An experiment of flow visualization was carried out to investigate the main cause of these cavitation damages and find the prevention method. Experimental results of flow visualization show that these damages are mainly affected by fountain-like cavitation and jet-type cavitation generated before and after the end of fuel delivery process and therefore the prevention method was designed to control these cavitation flows. From the visualization and endurance test, it was proved that this method can effectively prevent cavitation damages by controlling cavitation flows.

  • PDF

A Study on the Reduction Effectiveness of Vehicle Emission by Biodiesel Fuel (바이오디젤 사용에따른 오염물질 개선효과 연구)

  • 류정호;엄명도;김종춘;이태우;김선문;김기호;정충섭
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.181-182
    • /
    • 2003
  • 경유엔진은 가솔린엔진에 비해 연소특성상 연료소비효율이 우수하여 온실가스인 $CO_2$ 배출이 적은 반면 대기 및 인체위해성이 높은 NOx와 입자상물질(PM)의 배출이 많아 대기저감을 위한 연료의 고압분사, 전자제어식 EGR기술등 엔진개량기술과 매연여과장치, De-NOx등 후처리기술 그리고 대체연료사용 기술등 다양한 저감대책이 전세계적으로 강구되고 있다. 특히 경유엔진에서 배출되는 오염물질로 인한 대기오염영향은 점차 증가하고 있어 대체연료사용 및 배출허용기준강화둥 우리 실정에 적합한 효율적인 대기저감대책이 강구되어야 할 것이다. (중략)

  • PDF

A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion (디젤기관의 스모크배출의 확산연소 의존성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection (커먼레일식 직분식 가시화 디젤엔진의 파일럿 분사 연소 및 Soot 분포 특성에 관한 연구)

  • Han, Yong-Taek;Lee, Jae-Yong;Lee, Ki-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I.Diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

  • PDF

A Study on the Urea-SCR System for NOx Reduction of a light-Duty Diesel Engine (소형 디젤엔진의 NOx 저감을 위한 Urea-SCR 시스템에 관한 연구)

  • Nam Jeong-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.57-63
    • /
    • 2005
  • The effects of an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated with the parameters such as urea-SCR(Selective Catalytic Reduction) and EGR system. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection quantity can be controlled with the urea syringe pump, precisely. The effects of NOx reduction for the urea-SCR system were investigated with and without ECR engine, respectively. It was concluded that the SUF(Stoichiometric Urea Flow) is calculated and the NOx results are visualized with engine speed and load. Furthermore, the NOx map is made from this experimental results. It was suggested, therefore, that NOx reduction effects of the urea-SCR system without the EGR engine were better than that with the EGR engine except of low load and low speed.

A Prediction of DI Diesel engine Performance using the Multizone Model (Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구)

  • ;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

Effects of Swirl Ratio on Combustion Characteristics in DI Diesel Engine (스월비 변화가 직접분사식 디젤기관의 연소특성에 미치는 영향)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.149-153
    • /
    • 2003
  • Besides the fuel spray behavior and combustion chamber shape. an air motion has a key role on exhaust gas emission and performance in a DI diesel engine. A swirl ratio represents the ratio of the intake swirl velocity to the engine speed. The main purpose in this work is to investigate the effects of the swirl ratio to the combustion characteristics. A shroud valve machined to change the swirl ratio. Test was carry out by changing the engine speed, nozzle diameter and swirl ratio in a single cylinder diesel engine. From this study, the optimized combustion was found at swirl ratio 2.7. And it was also found that the increasing the maximum cylinder pressure with an increasing swirl ratio lead to decrease a smoke and to increase NOx.

  • PDF

Finite Element Analysis for the Cold Forging Process of Tube Injector to Improve Material Utilization (재료이용률 향상을 위한 Tube Injector의 냉간단조공정 유한요소해석)

  • Kim, Hyun-Min;Min, Kyu-Young;Sin, Kyung-Sic;Park, Yong-Bok;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.135-138
    • /
    • 2009
  • 자동차 디젤 분사장치의 하우징인 튜브 인젝터는 부품의 특성상 내식성, 내산화성, 강도 등을 필요로 하는 STS소재를 주로 사용하는데, 기존의 제조방법은 절삭가공이 주류를 이루었다. 그러나 생산성증대 필요성과 소재 이용률향상 및 제품의 고급화를 위하여 정밀냉간단조를 이용한 소성가공 방법이 최근에 시도되고 있다. 본 논문은 최적 정밀냉간단조 성형을 위해 유한요소법을 이용함으로써 정밀냉간 단조 공정 및 금형설계의 기초자료를 제시하였다.

  • PDF