• Title/Summary/Keyword: 디에탄올아민

Search Result 25, Processing Time 0.018 seconds

Preparation of Cationic Liposomes Modified by Polyethylenimine and Their Application as Gene Carrier (폴리에틸렌이민으로 수식된 양이온 리포좀의 제조 및 유전자 전달체로서의 응용)

  • Seo, Dong-Hoan;Shin, Byung-Cheol;Kim, Moon-Suk
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.277-281
    • /
    • 2005
  • Recently, various curriers prepared by the modification both cationic polymers and liposomes have been examined. In this work, we prepared the lipid with polyethylenimine (PEI) to investigate the possibility as effective DNA carrier. Cationic lipid (PEI-DSPE) was synthesized by the reaction of PEI and 1,2-diacyl-sn-glycero-3-phosphoetha-nolamine (DSPE). The liposomes were prepared by the concenoation changes of PEI-DSPE for a mixture of 1,2-disteanyl-sn-glycero-3-phosphocholine (DSPC), L-$\alpha$-phosphatidylcholine, hydrogenated (HSPC) and cholesterol (CHOL). Particle size decreased as PEI-DSPE concentration increased. In addition, the charge of liposome surface increased to positive value according to increasing the relative of PEI-DSPE concentration. The complexation of DNA was confirmed by gel retardation assay and fluorescence measurement. The surface charge of liposome/DNA complexes increased as the liposome concentration or surface charge of liposome increased. In conclusion, we confirmed that the prepared liposomes have the possibility as a DNA carrier.

Synthesis of Vegetable-based Alkanol Amides for Improving Lubricating Properties of Diesel Fuel (경유의 윤활 성능 향상을 위한 식물유 기반 알칸올 아마이드의 합성)

  • Yuk, Jung-Suk;Kim, Young-Wun;Yoo, Seung-Hyun;Chung, Keun-Wo;Kim, Nam-Kyun;Lim, Dae-Jae
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.421-427
    • /
    • 2012
  • To improve the lubricity of ultra low sulfur diesel, vegetable oil-based alkanol amide derivatives were prepared and their lubricity properties were studied. To synthesize the alkanol amides, we conducted the amidation reaction of diethaolamine High Frequency Reciprocating Rig (HFRR) and the fatty acid methyl esters, obtained by the continuous transesterification of methanol and several vegetable oil, such as soybean oil, palm oil and coconut oil. The synthesized amides were soluble in ultra low sulfur diesel in the concentration range of ca. 1 wt%; the lubricating properties of ultra low sulfur diesel containing 120 ppm of amides were measured using an HFRR method. It was found that the wear scar diameter in the pure ultra low sulfur diesel decreased significantly from 581 ${\mu}m$ to 305~323 ${\mu}m$ upon the addition of the amides, indicating that lubricating properties of the diesel were improved. On the other hand, the types of vegetable oils did not affect the wear scar diameters, implying that lubricating properties of the diesel did not depend strongly on the structures of alkyl groups of alkanol amide derivatives. When we measured the lubricating properties of the one type of diesels containing various amounts of alkanol amide, we observed that the wear scar diameter decreased drastically with increasing the amide concentration, meaning that the lubricity improved with the amide concentration.

Studies on the Changes of Lipids during Soybean Koji Preparation for Daenjang Fermentation in Model System (된장 발효(醱酵) 중 콩 Koji 제조(製造)과정에 있어서 지질성분(脂質成分)의 변화(變化)에 관한 연구(硏究))

  • Lee, Sook-Hee;Cheigh, Hong-Sik;Kim, Chang-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.375-381
    • /
    • 1982
  • The studies are conducted on the changes of soybean lipids in terms of physicochemical characteristics, lipid classess and fatty acid composition during the fermentation process of soybean Koji preparation for daenjang (soybean paste) in a model system using cooked soybean inoculated by Aspergillus oryzae. The total lipids contents were increased during soybean Koji preparation, generally iodine values decreased but acid values increased. Total lipids of soybean Koji consisted of about 90.6% neutral lipids, 7.6% phospholipids and 1.8%, glycolipids indicating that phospholipids contents of soybean Koji was increased when compared to those of cooked soybean. The major components of nonpolar lipids in soybean Koji were free fatty acids(39.6%) and triglycerids(29.2%). Free fatty acids increased as the triglycerides decreased during soybean Koji preparation by the hydrolysis of lipase action. The major components of polar lipids in soybean Koji were phosphatidyl choline and phosphatidyl ethanolamine. Differences were observed in the composition of the polar lipids of cooked soybean and soybean Koji. A little changes also occurred in fatty acid compositions of total lipids, triglycerides and free fatty acids fractions in soybean Koji preparation. Especially a considerable increase of linoleic acid in free fatty acid fraction was observed in soybean Koji.

  • PDF

Studies on the Gemini Type Amphipathic Surfactant(5) - Preparation and Properties of Double Chain Surfactant with Two Sulfonate Groups Derived from N-Acyldiethanolamines - (제미니형 양친매성 계면활성제에 관한 연구(제5보) - 함질소 장쇄아실디에탄올아민으로부터 유도된 두 개의 술폰산 염기를 갖는 화합물의 합성 및 계면특성 -)

  • Yun, Young-Kyun;Jeong, Hwan-Kyeong;Jeong, Noh-Hee;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.565-568
    • /
    • 1998
  • Amphipathic compounds (bis-sulfonate Gemini type) with double or triple long chain alkyl groups were prepared by the reaction of N-(long chain acyl)diethanolamine diglycidyl ethers with fatty alcohols, followed by the reaction with propanesultone. All these new Gemini type surfactants were soluble in water and showed much better micelle forming ability and lowering surface tension than sodium dodecyl sulfonate with one sulfonate group. cmc and ${\Upsilon}$ cmc values of the triple-chain compounds were still much smaller than those of the corresponding double-chain compounds with two common alkyl groups. The efficiency of adsorption at the water/air interface ($pC_{20}$) of these surfactants was very high. Their foaming properties, wetting ability toward a felt chip, and lime-soap dispersing requirement (LSDR) were measured. Their initial foaming properties were high but showed good low foam stability, wettability and LSDR.

  • PDF

In Vitro Stability of Liposomes Containing Newly Synthesized Glycolipid (신규 합성 당지질 함유 리포솜의 In Vitro 안정성)

  • Song, Chung-Kil;Jung, Soon-Hwa;Seong, Ha-Soo;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • Liposomes having particle size from several tens to hundreds nanometers are efficient carriers for injectable drug delivery. Enhancement of liposome stability in bloodstream has been studied because of its relatively short circulation time and fast clearance from human body by reticuloendothelial system (RES) in blood vessel. In this study, new disaccharide-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) derivatives in which lactose or sucrose as the disaccharide molecule was conjugated covalently to DSPE were synthesized. Liposomes of which surface had disaccharide molecules were prepared by incorporating the disaccharide-DSPE into liposomes as one of their lipid components. Particle size of the prepared liposomes was approximately 100 nm. The liposomes of which surface were modified with the disaccharide-DSPE showed -25 mV of zeta potential value due to the presence of hydroxyl groups on their surface, while the unmodified control liposomes showed -10 mV of zeta potential value. Loading efficiency of model drug, doxorubicin, into liposomes was about 90%. Stability of the disaccharide-modified liposomes in vitro was evaluated by monitoring the amount of protein adsorption and particle size of the liposomes in serum. Disaccharide-modified liposomes were more stable in serum than unmodified control liposomes or polyethyleneglycol (PEG)-modified liposomes due to less adsorption of serum protein and hence less increase of their particle size. The liposomes of which surface was modified with disaccharide-DSPE conjugate can be used as long-circulating carriers for drugs having high toxicity or short half-life time due to their enhanced stability in blood circulatory system.