• Title/Summary/Keyword: 디아지논

Search Result 2, Processing Time 0.015 seconds

Statistical Characteristics of Diazinon Degradation using E-beam (전자빔을 이용한 통계적 Diazinon 분해특성 연구)

  • Lee, Sijin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.57-63
    • /
    • 2013
  • In this study, the characteristics of degradation and mineralization of diazinon using a statistical approach based on Box-Behnken design (BBD, one of response surface method) was investigated in an E-beam process, and also the main factors with diazinon concentration ($X_1$), irradiatin intensity ($X_2$) and pH ($X_3$) which consisted of 3 levels in each factor was set up to determine the effects of factors and optimization. At first, effects of pH and diazinon concentration were investigated to determine the proper range of application on response surface method(RSM). In statistical approach, the regression analysis and analysis of variance (ANOVA) were applied to evaluate the quantitative comparison of each factors in order to obtain the effects were irradiation intensity>diazinon concentration>pH. The regression model predicted the optimization point using the response optimizer to consider the effects of operation conditions were $Y_1=81.73-5.58X_1+23.69X_2-14.23X{_2}^2+4.22X{_3}^2(R^2=99.7%)$, $Y_2=35.23-3.01X_1+10.79X_2-7.58X_2{^2}(R^2=97.9%)$ and 95.7% of diazinon degradation, 41.8% of TOC reduction at 12.75mg/L and 4.26kGy, respectively. The pH condition was not significantly affects on E-beam process than other advanced oxidation processes (AOPs).

Health Risk Assessment for Workers Exposed to Diazinon Insecticide (디아지논 취급 근로자의 건강 위험성 평가)

  • Jung, Woo Jin;Kim, Chi Nyon;Won, Jong Uk;Kim, Ki Youn;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • Objectives: Diazinon is an insecticide which acts as a contact stomach and respiratory poison, and used throughout the world to control a wide range of sucking and chewing insects and mites on a range of crops. In this study, the airborne diazinon levels were measured for farmers, pest control operaters, landscapers, and agricultural chemicals sellers, and an assessment of the health risk to the workers was presented. The exposure scenario was based on the route of inhalation and skin absorption. The "OSHA Method No. 62" was used to sample and measure the airborne diazinon levels. The skin wipe method was applied to measure the level of the diazinone exposure through the skin. For the determination of exposure scenario, the exposure factors were surveyed for the daily average inhalation rate and the exposure period and frequency and time of diazinone as well as the body weight and lifetime of the workers. The median values of exposure frequency and exposure time were selected after evaluating the validity of those. Methods: The highest level of the diazinon exposure in the air was $107.21ug/m^3$ in farmers, followed by $93.53ug/m^3$ in landscapers, at $31.40ug/m^3$ in pest control operators, and $1.04ug/m^3$ in agricultural chemical seller. The amount of skin absorption was the highest in farmers at 63.39 ug/day, followed by landscapers at 10.47 ng/day, pest control operaters at 4.26 ng/day, and agricultural chemicals sellers at 0.34 ng/day. The hazardous indices calculated using toxicological reference value were 2.79 for pest control operaters, 0.41 for landscapers, 0.07 for agricultural chemicals sellers, and 0.06 for farmers. Conclusions: While the farmers were exposed to the high levels of diazinon through the air and skin, the pest control operaters, landscapers and agricultural chemicals sellers have more the diazinon hazards than the farmer based on the risk assessment in this study.