• Title/Summary/Keyword: 디버링 힘

Search Result 9, Processing Time 0.025 seconds

An Experimental Study on the Deburring Characteristics according to rpm Change of Deburring Wheel (디버링 휠의 회전수 변화에 따른 디버링 특성에 관한 실험적 연구)

  • Cheon, Kyeong-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The modern aircraft consists of tens/hundreds of thousands of components. A large proportion of these components are manufactured using a machining process. A deburring process must be performed after to machining. This study investigates the effect of changes in the deburring wheel rpm on the deburring force and radius. The deburring wheel is used to trim sharp edges off machined parts of the aircraft. The deburring wheel used consists of a core and a nylon hair(this new concept is protected under patent). We find that higher deburring wheel rpm results in increased deburring force and radius. For deburring wheel rotation rates of 500~750rpm, deburring force of 3.4~6.5kgf and deburring radius of 0.4~0.5mm were observed.

Deburring of Irregular Burr using Vision and Force Sensors (비젼과 힘센서를 이용한 불균일 버의 디버링 가공)

  • Choi, G.J.;Kim, Y.W.;Shin, S.W.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.83-88
    • /
    • 1998
  • This paper presents an efficient control algorithm that removes irregular burrs using vision and force sensors. In automated robotic deburring, the reference force should be accommodated to the profile of burrs in order to prevent the tool breakage. In this paper, (1) The profile of burrs is recognized by vision sensor and followed by the calculation of reference force, (2) Deburring expert's skill is transferred to robot. Finally, the performance of robot is evaluated through simulation and experiment.

  • PDF

Unified Motion and Force Control of JS-10 Robot Manipulator Based on Operational Space and 3D CAD (작업공간과 3D CAD를 기반으로 하는 JS-10 매니플레이터의 운동과 힘의 통합제어)

  • Ahn, D.S.;Nguyen, Van Phuc
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.57-63
    • /
    • 2012
  • 본 논문은 작업공간상에서 로봇 운동과 힘의 통합제어를 구현할 수 있는 플랫폼의 구현에 초점을 두고 있다. 조립 또는 디버링 같은 접촉작업에서의 매니플레이터 효율성 제고나 친 인간 환경에서의 휴머노이드 로봇의 안정성을 위해서는 종래의 PID 제어나 관절공간상에서의 CTM(Computed Torque Method) 제어보다는 작업공간상에서의 운동과 힘의 통합제어를 실시해야 한다. 이것을 위해서는 작업공간상에서의 엔드이펙트(end-effector, E-E)에 대한 동역학식과 자코비안(jacobian)을 도출해야 하며 이를 위해서는 각종 동적파라미터의 정확한 동정이 중요하다. 본 논문에서는 3D CAD 모델링, MATLAB, 동역학 시뮬레이터를 활용하여 로봇 모델링, 동역학식과 동적 파라미터 추출, 운동과 힘의 실시간 통합제어 시뮬레이션등을 쉽고 일관되게 진행할 수 있는 플랫폼을 구현하였고 적용예로써 JS-10로봇을 택해서 그 효용성을 입증하였다.

Force Control of Robotic Vacuum Sweeping Machine for Shipment (선박외벽용 작업을 위한 연마장비 힘제어)

  • Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.509-512
    • /
    • 2013
  • In this paper, force feedback control for industrial robots has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Conventionally, polished surface of the workpiece are recognized, chamfer ridge, machining processes such as deburring, and it is most difficult to automate because of its complexity, has been largely dependent on the human.

  • PDF

Appling of Force Control of the Robotic Sweeping Machine for Grinding (연마작업을 위한 로봇형 연마기의 힘제어 적용)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.276-281
    • /
    • 2014
  • In this research, we describe a force feedback control for industrial robots has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Conventionally, polished surface of the workpiece are recognized, chamfer ridge, machining processes such as deburring, and it is most difficult to automate because of its complexity, has been largely dependent on the human. To aim to build automatic vacuum system robotic force control was gripping the grinding tool, the present study we examined the adaptability to the polishing process to understand the characteristics of the control system feedback signal obtained from the force sensor mainly. Furthermore, as a field, which holds the key to the commercialization, I went ahead with the application to robotic sweeping machine. As a result, the final sweeping utilizing a robot machine to obtain a very good grinded surface was revealed.

A Study on Modeling of Pneumatic System for an IDC Device (IDC장치에 대한 공압시스템의 모델링에 관한 연구)

  • Nguyen, C.T.;Le, Q.H.;Jeong, Y.M.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.11-17
    • /
    • 2015
  • An intelligent deburring control (IDC) device is used to control the constant force for a deburring tool mounted on the end-effector of a robotic arm. This device maintains a constant contact force between the deburring tool and the workpiece in order to provide a good deburring performance. In this paper, we build a mathematical model in Matlab/Simulink to estimate the force control mechanism of the pneumatic system for the IDC device. The Simulink blocks are built for each separate part and are linked into an integrated simulation system. Such a model also relies on the effects of the flow rate through the valve, air compressibility in the cylinder, and time delay in the pressure valve. The results of the simulation are compared to a simple experiment in which convenient math modeling is performed. These results are then used to optimize the mechanical design and to develop a force control algorithm for the pneumatic cylinder.

Design of Force Measuring System for Deburring Using Industrial Robot (산업용로봇을 이용한 디버링을 위한 힘측정시스템 설계)

  • Lee, Gyeong Jun;Kim, Han Sol;Kim, Chong Jin;Kim, Hyeon Min;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.653-660
    • /
    • 2015
  • This paper describes the design of the force measuring system for an industrial robot's deburring work. The force measuring system is composed of a three-axis force sensor, a measuring device, a housing and a cover. The three-axis force sensor can detect x-direction force, y-direction force and z-direction force at the same time. The measuring device is designed using DSP(Digital Signal Processor), and have a RS-232 and a RS-485 communication port for sending force data to PC or other controller. As a result of test, the repeatability error and the non-lineality error of the three-axis force sensor are less than 0.03%, and the interference error of the sensor is less than 0.95%. It is thought that the force measuring system can be used for an industrial robot's deburring work.

A Study on the Force Control of a Robot Manipulator in the Deburring Process (디버링 작업을 위한 로봇 매니퓰레이터의 힘 제어에 관한 연구)

  • 채호철;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1169-1172
    • /
    • 1995
  • In this paper, the external force control and hybrid force control algorithms are proposed to apply Deburring process. the purpose of adjust which can be implemented to on unknown environments, adaptive control law(MRAC) is adopted. IF a model system is given, the plant system can be controlled on the way which we will introduce to. We showed the validation and the possibility of Deburring process with multi-dimensional force control through experiments. the experimental result show the validity of Deburring in the robot manipulator.

  • PDF

New Robbt Force Control Technique for Deburring and Polishing Process (로봇의 디버링 작업이나 표면 광택작업을 위한 새로운 힘제어 기술 개발)

  • Jeong, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.786-795
    • /
    • 2000
  • In this paper, a new impedance force control method for deburring and polishing process is proposed. The proposed method is robust to deal with unknown environment stiffness as unknown well as environment location. An adaptive technique is used to minimize the force error occurred due to unknown environment surface profile. A robust position control algorithm based on time-delayed information is used to cancel out uncertainties in robot dynamics. A three link robot manipulator is used to demonstrate performances of the proposed control on deburring and polishing tasks. Stability analysis for the adaptive control is presented and its results are confirmed by simulations.

  • PDF