• Title/Summary/Keyword: 디버링가공

Search Result 37, Processing Time 0.023 seconds

A Study on the Flexible Disk Deburring Process Arc Zone Parameter Prediction Using Neural Network (신경망을 이용한 유연디스크 디버링가공 아크형상구간 인자예측에 관한 연구)

  • Yoo, Song-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.681-689
    • /
    • 2009
  • Disk grinding was often applied to deburring process in order to enhance the final product quality. Inherent chamfering capability of the flexible disk grinding process in the early stage was analyzed with respect to various process parameters including workpiece length, wheel speed, depth of cut and feed. Initial chamfered edge defined as arc zone was characterized with local radius of curvature. Averaged radius and arc zone ratio was well evaluated using neural network system. Additional neural network analysis adding workpiece length showed enhance performance in predicting arc zone ratio and curvature radius with reduced error rate. A process condition design parameter was estimated using remaining input and output parameters with the prediction error rate lower than 2.0% depending on the relevant input parameter combination and neural network structure composition.

  • PDF

An Experimental Study on the Deburring Characteristics according to rpm Change of Deburring Wheel (디버링 휠의 회전수 변화에 따른 디버링 특성에 관한 실험적 연구)

  • Cheon, Kyeong-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The modern aircraft consists of tens/hundreds of thousands of components. A large proportion of these components are manufactured using a machining process. A deburring process must be performed after to machining. This study investigates the effect of changes in the deburring wheel rpm on the deburring force and radius. The deburring wheel is used to trim sharp edges off machined parts of the aircraft. The deburring wheel used consists of a core and a nylon hair(this new concept is protected under patent). We find that higher deburring wheel rpm results in increased deburring force and radius. For deburring wheel rotation rates of 500~750rpm, deburring force of 3.4~6.5kgf and deburring radius of 0.4~0.5mm were observed.

Characteristic of EP-MAP for Deburring of Microgroove using EP-MAP (전해-자기 복합 가공을 이용한 미세 그루브형상의 가공 특성에 관한 연구)

  • Kim, Sang Oh;Son, Chul Bae;Kwak, Jae Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.313-318
    • /
    • 2013
  • Magnetic abrasive polishing is an advanced deburring process for nonmagnetic materials and micropattern products that have non-machinability characteristics. Despite these advantages, there are some problems with using MAP for deburring. MAP has introduced geometric errors into microgrooves because of an over-cutting force caused by uncontrolled magnetic abrasives in the MAP tool. Thus, in this study, to solve this problem, an EP (electrolyte polishing)-MAP hybrid polishing process was developed for deburring microgrooves in an STS316 material. In addition, an evaluation of EP-MAP for the deburring of microgrooves was carried out by profiling the burrs. The results of the experiment showed geometric errors after the deburring process using MAP. However, in the case of EP-MAP, no geometric error was observed after the process because of the lower material removal rate in EP-MAP.

Determination of Cutting Conditions for an Efficient Deburring Process Using a New Deburring Tool (새로운 디버링 공구를 이용한 드릴링 버의 효율적 제거를 위한 가공조건 선정)

  • Bae, Jun-Kyung;Park, Ha-Young;Kwon, Byeong-Chan;Ko, Sung-Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.109-117
    • /
    • 2016
  • For efficient deburring of burrs that form inside mechanical parts after drilling, new special deburring tool was developed specifically for the burr found at intersecting holes. In this paper, the process for finding ideal cutting conditions has been carried out to identify the efficient performance of deburring using a new tool. The burrs at the entrance and exit surface were analyzed for efficient removal. The surface roughness after deburring was also reviewed for better performance. In addition, the influence of the feed rate on deburring quality was analyzed for improved productivity. Through this process, a new deburring tool can be applied effectively to remove burrs formed at intersecting holes.

A Study of Micro-Channel Fabrication by Micro-Milling and Magnetic Abrasive Deburring (마이크로 밀링과 자기디버링을 적용한 마이크로 유동채널 가공)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.899-904
    • /
    • 2011
  • This This study aims to verify burr formation and to remove the burrs in micro-channel fabrication using micro-machining tools. The machining processes are combined with micro-milling and magnetic abrasive deburring for AISI316 stainless steel. Depending on the micro-milling conditions that are applied, burrs are formed around the side walls. Magnetic abrasive deburring is used to remove these burrs. AISI316 stainless steel is a nonferrous material and its magnetic flux density, which is an important parameter for efficient magnetic abrasive deburring, is low. To enhance this magnetic flux density, we design and build a magnetic array table. The effect of removing burrs is evaluated via SEM and a surface tester.

미세입자분사 가공에서 Photoresist를 이용한 마스크의 가공특성에 관한 연구

  • 박동진;이인환;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.127-127
    • /
    • 2004
  • 입자분사 가공(abrasive jet machining)은 과거에는 녹(rust) 도색(painting)의 제거 흑은 디버링(deburring), 표면 처리 등의 용도에 국한되어 사용되어졌다. 한편 최근 들어 반도체 제작공정이나 MEMS 공정 등에 적용되는 실리콘(silicon) 등의 세라믹 재료의 미세가공분야가 주목받고 있으며, 따라서 이와 관련된 많은 연구가 진행되고 있다. 한편, 세라믹 재료는 파괴인성이 매우 낮고 취성이 강하기 때문에 크랙발생 후 큰 응력이 연속적으로 주어지면 크랙은 음속으로 진행되어 파단 되는 특성이 있어서 일반적인 기계가공이 매우 어렵다.(중략)

  • PDF

Deburring using Magnetic Abrasive Machining (자기연마법을 이용한 Deburring)

  • Yeo, Woo-Seok;Lee, Choong-Seok;Chae, Seung-Su;Choi, Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • The magnetic abrasive machining has been developed as a new finishing technology to obtain a fine surface of workpiece. In this paper, a static magnetic field method and a magnetic abrasive brush which has many technical advantages, are applied for the magnetic abrasive machining. In the experiment, some items such as finishing time, ratio of the magnetic abrasives to Fe-powder, motor revolutions per minute, and motor ratio revolutions per minute are tested. The results of this study have shown the fact that the burr height is mostly affected by the finishing time and the abrasive ratio. Also, it has been found that the magnetic abrasive machining is a possible new technology for the deburring.

  • PDF

A Study on Development of High Speed Deburring Machine (고속 디버링 머신의 개발에 관한 연구)

  • Koo, Ja-Ham;Kim, In-Hwan;Hur, Nam-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.116-121
    • /
    • 2013
  • A high speed deburring machine was developed based on the analysis of magnetic contact force, forced vibration, stiffness and deformation of the structure. After 3 dimensional CATIA modelling, the stiffness and the deformation properties of the deburring machine in static and dynamic condition using finite element method were analyzed. Both static and dynamic simulation results showed that designed high speed deburring machine was well satisfied the stability properties at the operating condition. we have performance test program for the real system to evaluate the simulation results.